Atmospheric WAter Cycle over Antarctica Past Present and Future
Climate models predict that precipitation will increase in Antarctica, which will moderate global sea-level rise. Meanwhile, the isotopic composition of snowfall records climate parameters which can be recovered in ice cores. Howe...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
MUSICA
Multi platform remote sensing of isotopologues for investiga...
2M€
Cerrado
RTI2018-097864-B-I00
SINERGIA EN LA OBTENCION DE PROPIEDADES AVANZADAS DE AEROSOL...
351K€
Cerrado
PID2021-127588OB-I00
DETERMINACION DE COMPONENTES ATMOSFERICOS EN ZONAS POLARES Y...
169K€
Cerrado
COMBINISO
Quantitative picture of interactions between climate hydrol...
2M€
Cerrado
ESP2014-54362-P
COMPOSICION Y TEMPERATURA EN ATMOSFERAS PLANETARIAS
266K€
Cerrado
CAPRI
Clouds and Precipitation Response to Anthropogenic Changes i...
1M€
Cerrado
Información proyecto AWACA
Duración del proyecto: 91 meses
Fecha Inicio: 2021-01-20
Fecha Fin: 2028-08-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Climate models predict that precipitation will increase in Antarctica, which will moderate global sea-level rise. Meanwhile, the isotopic composition of snowfall records climate parameters which can be recovered in ice cores. However, there are still major gaps in our understanding of the atmospheric water cycle over Antarctica. For the first time, the AWACA project will provide a consistent and comprehensive combined observation and modeling framework to understand and predict the fate of atmospheric water all along the tropospheric column. Specifically adapted/designed instruments will be combined to form observation platforms deployed at 5 sites along a 1100 km coast-to-plateau transect aligned with the typical moisture-carrying air mass trajectories. The challenges of working in full autonomy in Antarctica, never addressed to such an extent before, will be tackled by collaborating with experts in polar technology and logistics. The resulting data set will make possible the study of the processes driving the water fluxes and composition to an unprecedented level, and the gained insights will be a strong basis to develop new physics parameterizations for regional and climate models. Once validated along the transect but also in other regions of Antarctica thanks to satellite observations and past campaigns, those models will enable us to decipher the past and future variability of the atmospheric water cycle over Antarctica.