Astrophysical constraints on the identity of the dark matter
The identity of the dark matter is a fundamental problem in Physics whose solution will have major implications for cosmology, astronomy and particle physics. There is compelling evidence that the dark matter consists of elementar...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RYC2020-029184-I
New Avenues in Dark Matter searches and Cosmic-Ray physics
324K€
Cerrado
RYC-2011-08262
The CMB as a Probe of the First Stars, Dark Energy and the M...
184K€
Cerrado
PGC2018-094773-B-C33
FISICA FUNDAMENTAL Y COSMOLOGIA CON CARTOGRAFIADOS EXTRAGALA...
169K€
Cerrado
PGC2018-094773-B-C32
FISICA FUNDAMENTAL Y COSMOLOGIA CON CARTOGRAFIADOS EXTRAGALA...
133K€
Cerrado
PID2021-123012NB-C43
FISICA FUNDAMENTAL Y COSMOLOGIA CON CARTOGRAFIADOS EXTRAGALA...
204K€
Cerrado
Información proyecto DMIDAS
Duración del proyecto: 88 meses
Fecha Inicio: 2018-05-23
Fecha Fin: 2025-09-30
Líder del proyecto
UNIVERSITY OF DURHAM
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The identity of the dark matter is a fundamental problem in Physics whose solution will have major implications for cosmology, astronomy and particle physics. There is compelling evidence that the dark matter consists of elementary particles created shortly after the Big Bang, but searches for them in the laboratory and from astrophysical sources have proved inconclusive. The currently favoured candidate is cold dark matter or CDM. This forms the basis of the standard model of cosmology, LCDM, whose predictions, dating back to the 1980s, turned out to agree remarkably well with observations covering a staggering range of epochs and scales, from the temperature structure of the cosmic microwave background radiation to the large-scale pattern of galaxy clustering. Yet, this agreement is not exclusive to CDM: models based on other types of particles -- warm, self-interacting or asymmetric, for example -- agree equally well with these data but differ on scales smaller than individual bright galaxies. These are the scales targeted in this application in which we propose a comprehensive investigation of small-scale structure, with the aim of testing dark matter candidates, by focusing on three key astrophysical diagnostics: strong gravitational lensing, dwarf galaxies and stellar halos. We propose a joint theoretical and observational programme exploiting three major developments: SWIFT, a new code developed at Durham that will enable cosmological hydrodynamics simulations an order of magnitude larger than is possible today; SuperBIT, an innovative balloon-borne wide-field imaging telescope that will collect gravitational lensing data for hundreds of galaxy clusters; and DESI, a spectro-photometric survey that will acquire 10 times more spectra of stars in the Milky Way than previous surveys. The particle models that we will consider have predictive power and are disprovable. Our programme has the potential to rule out many dark matter particle candidates, including CDM.