Astrochemistry of old stars direct probing of unique chemical laboratories
The gas and dust in the interstellar medium (ISM) drive the chemical evolution of galaxies, the formation of stars and planets, and the synthesis of complex prebiotic molecules. The prime birth places for this interstellar materia...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
NATURALISM
Novel Analysis Toward UndeRstAnding the moLecular complexity...
192K€
Cerrado
3DICE
3D Interstellar Chemo physical Evolution
1M€
Cerrado
AYA2016-75066-C2-1-P
EVOLUCION FISICA Y QUIMICA DEL MEDIO INTERESTELAR, CIRCUNEST...
Cerrado
AYA2014-58082-P
HACIA LA COMPRENSION DE LOS ULTIMOS ESTADOS DE LA EVOLUCION...
136K€
Cerrado
AstroMol
Chemical Transformations in the Inter-Stellar Medium: Photoc...
1M€
Cerrado
AYA2008-06374
FORMACION, EVOLUCION Y COMPOSICION DE MANTOS DE HIELO Y MATE...
140K€
Cerrado
Información proyecto AEROSOL
Duración del proyecto: 73 meses
Fecha Inicio: 2015-11-26
Fecha Fin: 2021-12-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The gas and dust in the interstellar medium (ISM) drive the chemical evolution of galaxies, the formation of stars and planets, and the synthesis of complex prebiotic molecules. The prime birth places for this interstellar material are the winds of evolved (super)giant stars. These winds are unique chemical laboratories, in which a large variety of gas and dust species radially expand away from the star.
Recent progress on the observations of these winds has been impressive thanks to Herschel and ALMA. The next challenge is to unravel the wealth of chemical information contained in these data. This is an ambitious task since (1) a plethora of physical and chemical processes interact in a complex way, (2) laboratory data to interpret these interactions are lacking, and (3) theoretical tools to analyse the data do not meet current needs.
To boost the knowledge of the physics and chemistry characterizing these winds, I propose a world-leading multi-disciplinary project combining (1) high-quality data, (2) novel theoretical wind models, and (3) targeted laboratory experiments. The aim is to pinpoint the dominant chemical pathways, unravel the transition from gas-phase to dust species, elucidate the role of clumps on the overall wind structure, and study the reciprocal effect between various dynamical and chemical phenomena.
Now is the right time for this ambitious project thanks to the availability of (1) high-quality multi-wavelength data, including ALMA and Herschel data of the PI, (2) supercomputers enabling a homogeneous analysis of the data using sophisticated theoretical wind models, and (3) novel laboratory equipment to measure the gas-phase reaction rates of key species.
This project will have far-reaching impact on (1) the field of evolved stars, (2) the understanding of the chemical lifecycle of the ISM, (3) chemical studies of dynamically more complex systems, such as exoplanets, protostars, supernovae etc., and (4) it will guide new instrument development.