Assessing Feedback Responses of soil Erosion through the lens of variable Sedime...
Assessing Feedback Responses of soil Erosion through the lens of variable Sediment connectivity during Extreme EveNts in semi-arid catchments.
Soil resources in semi-arid regions are rapidly degrading, posing an imminent threat to food, water and livelihood security. Caveats in our understanding of geomorphological responses to extreme events are a major hindrance for at...
Soil resources in semi-arid regions are rapidly degrading, posing an imminent threat to food, water and livelihood security. Caveats in our understanding of geomorphological responses to extreme events are a major hindrance for attributing soil erosion and sediment flux dynamics to environmental drivers. Using the Burdekin and Makuyuni catchments as natural laboratories for semi-arid regions, the AsFoRESEEN project will assess feedback dynamics in soil erosion through the lens of variable sediment connectivity to test the hypothesis that extreme events can trigger regime shifts towards highly connected ephemeral gully networks. The proposed knowledge transfer strategies will bring the researcher’s scientific and analytical skills to the international standard, underpinning his ambition to combine academic and consultancy work within a leading European research institution. The researcher's unique skillset will be applied to develop novel approaches and integrate them with established techniques in an open-access diagnostic toolkit to support targeted soil- and water management interventions. Temporal dynamics in fine sediment and Phosphorous transport will be quantified using high-frequency sensors and sediment dating techniques. We will be the first to evaluate the use of secondary weathered metal species as tracers, providing a new pathway for attributing the contribution of gully erosion in deeply weathered or alluvials soils. Stream monitoring and sediment source tracing outputs will be integrated in a dynamic sediment budget to elucidate non-linear geomorphological responses to extreme events and land use changes. As a source of innovation, we will couple a machine-learning gully quantification tool with a dynamic catchment model, wherein gullies are both a direct source of sediment and a driver of changing sediment connectivity. The hybrid model will be used to test the efficacy of gully remediation strategies under current and future climatic conditions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.