Assembly and plasticity of inhibitory cortical networks by early learning experi...
Assembly and plasticity of inhibitory cortical networks by early learning experience
The extraordinary diversity of animal behaviors relies on the precise assembly and fine-tuning of synapses in neuronal circuits that adapt to an ever-changing environment. Hence, mature networks are the final expression of experie...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PrefrontalMap
Organization and learning associated dynamics of prefrontal...
2M€
Cerrado
AudiLearn
Deciphering the long range modulation of neuronal networks i...
191K€
Cerrado
PID2020-115780GB-I00
DIVERSIDAD CELULAR, SINAPTICA Y FUNCIONAL DE LAS REDES TALAM...
138K€
Cerrado
BFU2012-34298
FORMACION DE LAS CONEXIONES TALAMOCORTICALES: DESDE LA GUIA...
316K€
Cerrado
PID2019-109285GA-I00
INTERROGACION IN VIVO DE LA FUNCION Y PLASTICIDAD DE CIRCUIT...
143K€
Cerrado
Duración del proyecto: 66 meses
Fecha Inicio: 2020-06-29
Fecha Fin: 2025-12-31
Líder del proyecto
KINGS COLLEGE LONDON
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The extraordinary diversity of animal behaviors relies on the precise assembly and fine-tuning of synapses in neuronal circuits that adapt to an ever-changing environment. Hence, mature networks are the final expression of experiences accumulated throughout our life. Importantly, young brains are more amenable to learning that older brains, but the neural mechanisms underlying these differences remain largely unknown. In the cerebral cortex, for example, there are two main classes of neurons, excitatory projection neurons (pyramidal cells) and inhibitory neurons (interneurons). Interneurons have a remarkable capability to sense changes in sensory experience and therefore occupy a unique position to orchestrate circuit remodeling. The goal of this project is to understand the mechanisms through which enhanced sensory experience during development sculpts cortical circuitries to improve behavioral performance in mice. To this end, we will use: (1) a synaptic connectivity mapping strategy (e-GRASP) and an activity-dependent promoter to explore specific cell- and synaptic-specific reorganizations driven by sensory experience; (2) sensory discrimination tasks and two-photon microscopy to explore the emergence of cortical functional properties, cell ensembles and behavioral performance; (3) unbiased screenings in cell populations and specific synapses together with single-cell RNA sequencing to identify genes that regulate cell-type specific modifications; and (4) loss of function approaches (shRNA and CRISPR/Cas9) to analyze the role of the identified candidate genes. Our research will shed light on the mechanisms shaping the assembly and function of cortical circuitries during early sensory experience.