Artificial Translation with Dynamic Foldamers Relaying Encoded Messages into Ch...
Artificial Translation with Dynamic Foldamers Relaying Encoded Messages into Chemical Function
We propose to apply the power of synthetic chemistry to a new challenge in synthetic biomimicry: the translation of encoded information into molecular function. We propose to design and build switchable synthetic molecules that ar...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
SMALL
Surfaces for molecular recognition at the atomic level
5M€
Cerrado
REPLI
Self replication in dynamic molecular networks
1M€
Cerrado
MECHPROCMOLS
A Synthetic Molecule that can Walk down a Track!
179K€
Cerrado
CTQ2017-87231-P
REACTIVIDAD Y CONMUTACION DE MOLECULAS MECANIZADAS
90K€
Cerrado
DYNAREP
Self Replication in Dynamic Combinatorial Libraries
169K€
Cerrado
ASSEMZYME
Continuous self assembly using enzyme mediated supramolecula...
173K€
Cerrado
Información proyecto DOGMATRON
Duración del proyecto: 77 meses
Fecha Inicio: 2020-04-23
Fecha Fin: 2026-09-30
Líder del proyecto
UNIVERSITY OF BRISTOL
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
We propose to apply the power of synthetic chemistry to a new challenge in synthetic biomimicry: the translation of encoded information into molecular function. We propose to design and build switchable synthetic molecules that are capable of communicating and processing information. This ambitious aim will be achieved through new classes of extended dynamic molecules that respond to their environment by changing shape, principally by invertase polarity/directionality. They will receive, communicate, amplify, transmit, and process information encoded in their molecular conformation and orientation. New analystic methods will be developed to explore their kinetics and thermodynamics. Characterized by a high level of intramolecular structural organization, they will participate in strong, selective mutual interactions, allowing them to process information through intramolecular and intermolecular interactions in simple and complex mixtures, both solution and in the membrane phase. These chemical systems will be able to extract information from their environment (the presence of a specific metal or organic molecule, a genetically encoded message, pH, or irradiation at a specific wavelength) and process it into chemical function. Life takes information in the form of bond polarity encoded in base pairs and translates it into biochemical function in the form of protein structure, and our synthetic structures will likewise translate molecular polarity into function by using new classes of ‘promiscuous’ Watson-Crick-like base-pairs, able to switch between alternative hydrogen-bond polarities. Applications for these synthetic communication systems will ultimately see them embedded into cell membranes, allowing the selective control of function by communicating into the interior of both artificial vesicles and living cells.