Artificial Intelligence Solutions to Meteo Based DCB Imbalances for Network Oper...
Artificial Intelligence Solutions to Meteo Based DCB Imbalances for Network Operations Planning
ISOBAR aims at the provision of a service- and AI-based Network Operations Plan, by integrating enhanced convective weather forecasts for predicting imbalances between capacity and demand and exploiting AI to select mitigation mea...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto ISOBAR
Duración del proyecto: 31 meses
Fecha Inicio: 2020-04-17
Fecha Fin: 2022-11-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
ISOBAR aims at the provision of a service- and AI-based Network Operations Plan, by integrating enhanced convective weather forecasts for predicting imbalances between capacity and demand and exploiting AI to select mitigation measures at local and network level in a collaborative ATFCM operations paradigm. To achieve this vision, four objectives are set:
a) Reinforce collaborative ATFCM processes at pre-tactical and tactical levels into the LTM (local) and Network Management (network) roles integrating dynamic weather cells.
b) Characterisation of demand and capacity imbalances at pre-tactical level [-1D, -30min] depending on the input of probabilistic weather cells by using applied AI methods and ATM and weather data integration.
c) User-driven mitigation plan considering AUs priorities (and fluctuations in demand based on weather forecasts) and predicted effectiveness of ATFCM regulations, considering flow constraints and network effects.
d) Develop an operational and technical roadmap for the integration of ancillary services (providing AI-based hotspot detection and adaptative mitigation measures) into the NM platform, by defining interfaces, functional and performance requirements.