Artificial intelligence for yield estimations at fruit orchards
"Crop yield estimation is an important task in apple orchard management. The current practice of yield estimation is based on manual counting of fruits by workers. It is extremely time-consuming, labour-intensive, highly inaccurat...
ver más
CODESIAN SOTWARE TECH
Programación y consultoría informática; gestión de recursos informáticos; servicios relacionados con la tecnología de la información y la in...
TRL
4-5
| 533K€
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
OrchardMan
A novel vision based orchard system to maximize fruit tree y...
71K€
Cerrado
Revotree
An automated machine learning IoT agronomic platform for o...
71K€
Cerrado
Información proyecto AGERPIX
Duración del proyecto: 3 meses
Fecha Inicio: 2019-11-04
Fecha Fin: 2020-02-29
Líder del proyecto
CODESIAN SOTWARE TECH
Programación y consultoría informática; gestión de recursos informáticos; servicios relacionados con la tecnología de la información y la in...
TRL
4-5
| 533K€
Presupuesto del proyecto
71K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"Crop yield estimation is an important task in apple orchard management. The current practice of yield estimation is based on manual counting of fruits by workers. It is extremely time-consuming, labour-intensive, highly inaccurate, and it is not practical for large fields. Agerpix provides accurate predictions to help growers improve fruit quality and reduce operating costs by making better decisions on intensity of fruit thinning and plant nutrients and treatments (mid-season), size of the harvest labour force, machinery and materials and logistical planning of storage, packing and cold warehouses, not to mention the development of a commercialization strategy tailored to the expected production, achieving a 50% cost reduction in orchard management operations. Artificial Intelligence algorithms are used to identify, measure diameter ranges, and envision the fruit leafiness and vigour, providing yield estimations over the plant heights and plant health variables.
Several piloting projects for the yield estimation system at top apple producers (Nurfri - #1 Spanish and Blue Whale #1 French among others) have been deployed with +140ha analysed with a precision of 90-95%. AGERPIX system has been adapted to four different apple varieties. After successful validation activities, CODESIAN is developing a customer portfolio worth 38M€ in five years. However, because AGERPIX is offering as a B2B service and because the technology can be easily replicated to other fruits (ongoing validations with table grapes and peach with minor AI/sensor adaptations), a careful scale-up design to strengthen the business plan towards covering global needs fruit markets (apple: 517 M€; table grape: 124 M€; peach: 160M€; tangerine: 299 M€; avocado: 54 M€) is needed. After further data gathering through extensive validations across new fruits, CODESIAN projects +7,9M€ revenues with +4,5M€ EBIT and +60 new jobs created by 2024.
"