The age of machine learning and data analytics have changed the habits of entertainment. Recommendation systems have been improving in the last years, with relevant commercial purposes, and many top-level companies –such as Amazon...
The age of machine learning and data analytics have changed the habits of entertainment. Recommendation systems have been improving in the last years, with relevant commercial purposes, and many top-level companies –such as Amazon, Google or Netflix- are investing high amounts of money in improving their algorithms based on Artificial Intelligence. The case of music has been especially relevant, as the market has drastically changed in the last 10 years, moving towards a user-centric streaming model, where user preferences make the difference and dynamic playlists are the key of streaming success. Recommenders are built based on three main strategies:
1) similarities between songs that are identified by their soundwaves;
2) classification using conventional tags for songs, such as author, genre, period or, in some cases, mood; and
3) collaborative tagging by users.
In this context, song lyrics (the text of songs) are barely considered for the improvement of these strategies. Moreover, recommendations based on lyrics are done by hand with uneven criteria and filters. This Proof of Concept proposes the creation of an AI based recommendation engine (i.e. web service API) for analyzing song lyrics using POSTDATA ERC Project algorithms as its technical scaffold. Natural Language Processing tools for poetry analysis will be used to build a web service API to process lyrics and extract knowledge as additional metadata to enrich the companies´recommender systems. This approach will open an exciting opportunity to contribute to boosting the music entertainment world using artificial intelligence and language technologies.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.