Artificial Intelligence Driven Materials Design for Spintronic Applications
The steady increase in energy consumption per capita and the slow transition toward renewable energy sources is becoming a serious global problem, making energy efficiency paramount for new technologies. Two-dimensional materials...
The steady increase in energy consumption per capita and the slow transition toward renewable energy sources is becoming a serious global problem, making energy efficiency paramount for new technologies. Two-dimensional materials offer an encouraging path toward ultra-low-power electronics due to our capability to combine them into Van der Waal heterostructures with tailored quantum properties based on their constituents. The spin-orbit torque (SOT) memories are technological prospects that consume a fraction of conventional memories' power. Still, they offer superior speed and storage capacity and were further improved when using 2D materials as building blocks instead of 3D metallic systems. Recently theoretical efforts demonstrated the existence of thousands of potentially synthesizable 2D materials, opening an exponentially larger pool to mine for optimized heterostructures which brute-force approaches cannot tackle. This project aims at developing artificial intelligence that will propose optimized Van der Waal heterostructures for spin-orbit torques. To this end, we will first construct an automatic material assessment (AUTOMATA) tool based on deep neural networks that will perform numerical modeling and quantum transport simulations autonomously to compute the spin-orbit torque efficiencies. In parallel, we will develop a computer-assisted structure (COMPASS) optimizer that will propose new systems for spin-orbit torques by using an evolutionary strategy. The AUTOMATA tool will rank the candidates generated by the COMPASS optimizer, and we will use those with superior performance to improve the COMPASS optimizer prediction. The successful combination of these tools will accelerate the development of technologies by automatizing the material selection phase through this quantum mechanical optimization process. Although we apply it to spin-orbit torques, it is, with little effort, generalizable to any electrical response functions.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.