Artificial Intelligence and Machine Learning for Enhanced Representation of Proc...
Artificial Intelligence and Machine Learning for Enhanced Representation of Processes and Extremes in Earth System Models
Global warming continues at an alarming rate, presenting unprecedented challenges to society that require urgent, science-led mitigation and adaptation. Earth system models (ESMs) are essential tools for projecting climate change,...
ver más
31/03/2028
Líder desconocido
7M€
Presupuesto del proyecto: 7M€
Líder del proyecto
Líder desconocido
Fecha límite participación
Sin fecha límite de participación.
Financiación
concedida
El organismo HORIZON EUROPE notifico la concesión del proyecto
el día 2023-10-24
Este proyecto no cuenta con búsquedas de partenariado abiertas en este momento.
Información adicional privada
No hay información privada compartida para este proyecto. Habla con el coordinador.
Participantes
Conecta tu I+D
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto AI4PEX
Duración del proyecto: 53 meses
Fecha Inicio: 2023-10-24
Fecha Fin: 2028-03-31
Líder del proyecto
Líder desconocido
Presupuesto del proyecto
7M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Global warming continues at an alarming rate, presenting unprecedented challenges to society that require urgent, science-led mitigation and adaptation. Earth system models (ESMs) are essential tools for projecting climate change, providing important information to decision makers. However, confidence in predicted climate change is undermined by a number of uncertainties; (i) ESMs disagree on how much the Earth will warm for a given increase in atmospheric carbon dioxide (CO2) (Earth’s equilibrium climate sensitivity); (ii) how much emitted CO2 will stay in the atmosphere to warm the planet (half the CO2 emitted by humans has been absorbed by the land and ocean) and (iii) how much excess heat in the Earth system will enter the ocean interior, delaying surface warming (~90 % of the heat in the Earth system goes into the ocean). Central to these uncertainties are poorly understood, and poorly modelled, Earth system feedbacks, in particular cloud feedbacks, carbon cycle feedbacks and ocean heat uptake. Poor representation of these phenomena degrades the accuracy of ESM projections, with implications for anticipating future climate extremes and societal impacts. We aim to improve the representation of these feedbacks in ESMs, reducing uncertainty in global warming projections. We propose a multidisciplinary approach, focused on learning how to accurately describe processes underpinning these feedbacks, through a fusion of observations with advanced machine learning (ML) and artificial intelligence (AI). Such data and approaches, constrained by the laws of physics, will deliver a step change in the accuracy of Earth system models.
AI4PEX will place Europe at the forefront of a revolution in Earth system modelling, leading to increased accuracy of climate change projections and superior support for implementation of the Paris Climate Agreement and the European Green Deal.