Argumentation based Deep Interactive EXplanations ADIX
Today’s AI landscape is permeated by plentiful data and dominated by powerful methods with the potential to impact a wide range of human sectors, including healthcare and the practice of law. Yet, this potential is hindered by t...
Today’s AI landscape is permeated by plentiful data and dominated by powerful methods with the potential to impact a wide range of human sectors, including healthcare and the practice of law. Yet, this potential is hindered by the opacity of most data-centric AI methods and it is widely acknowledged that AI cannot fully benefit society without addressing its widespread inability to explain its outputs, causing human mistrust and doubts regarding its regulatory and ethical compliance. Extensive research efforts are currently being devoted towards explainable AI, but they are mostly focused on engineering shallow, static explanations providing little transparency on how the explained outputs are obtained and limited opportunities for human insight. ADIX aims to define a novel scientific paradigm of deep, interactive explanations that can be deployed alongside a variety of data-centric AI methods to explain their outputs by providing justifications in their support. These can be progressively questioned by humans and the outputs of the AI methods refined as a result of human feedback, within explanatory exchanges between humans and machines. This ambitious paradigm will be realised using computational argumentation as the underpinning, unifying theoretical foundation: I will define argumentative abstractions of the inner workings of a variety of data-centric AI methods from which various explanation types, providing argumentative grounds for outputs, can be drawn, generate explanatory exchanges between humans and machines from interaction patterns instantiated on the argumentative abstractions and explanation types, and develop argumentative wrappers from human feedback. The novel paradigm will be theoretically defined and informed and tested by experiments and empirical evaluation, and it will lead to a radical re-thinking of explainable AI that can work in synergy with humans within a human-centred but AI-supported society.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.