Applying photon Up-conversion in ROtaxanes for super-Resolution microscopy Analy...
Applying photon Up-conversion in ROtaxanes for super-Resolution microscopy Analyses
This multidisciplinary AURORA project focuses on the development of prototype rotaxane (molecular ring-on-thread) structures displaying triplet fusion upconversion photoprocess. Structural design will instill this process via spon...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
FIS2011-27968
ESTUDIO COMPARATIVO DE LA DINAMICA ESPECTRAL Y TEMPORAL DE L...
38K€
Cerrado
ANACONDA
Attosecond nanoscopy of electron dynamics instrongly correla...
2M€
Cerrado
PGC2018-096047-B-I00
PROPIEDADES CUANTICAS DE LA LUZ EMITIDA POR UNA UNION TUNEL
53K€
Cerrado
EQC2019-006317-P
Ampliación de INMALAB con un sistema de medida de fotolumini...
168K€
Cerrado
FemtoPix
Imaging Ultrafast Single Particle Macromolecular Dynamics wi...
2M€
Cerrado
PrintNano4Fluo
Metal nanoapertures by nanoimprint to enhance single molecul...
150K€
Cerrado
Información proyecto AURORA
Duración del proyecto: 26 meses
Fecha Inicio: 2023-07-06
Fecha Fin: 2025-09-30
Líder del proyecto
UNIVERSITE DE BORDEAUX
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
196K€
Descripción del proyecto
This multidisciplinary AURORA project focuses on the development of prototype rotaxane (molecular ring-on-thread) structures displaying triplet fusion upconversion photoprocess. Structural design will instill this process via spontaneous excited dye collisions in confined trajectories of the designed interlocked molecules to create a fluorescent state (from two combined low energy photons). Such architectures will help to collect information on molecular photon upconversion and intramolecular diffusion processes through time-resolved spectroscopies. Moreover, it will produce intermittent fluorescence blinking by which detailed analysis will afford a new methodology for super-resolution imaging, namely below the diffraction limit of light. In theory this can provide solutions to some limitations of actual approaches and impact this research field. Fluorescence modulation within these autonomous [2]rotaxanes by triplet fusion will lead to studies down to the single-molecule level (based on Stochastic Optical Reconstruction Microscopy) which will be employed to establish a new localization microscopy method (T2-STORM) and be validated through imaging commercial nanostructured biomacromolecules.
Both leading French research institutes, Institut des Sciences Moleculaires (ISM) and Laboratoire Photonique Numerique et Nanosciences (LP2N) will co-host the AURORA project. The French fellow, specialist in synthetic organic and supramolecular chemistry, will be taught molecular photophysics/photochemistry and super-resolution fluorescence imaging. Additional work packages will guarantee efficient scientific advances, training, career development, management, communication and potentially technology transfer. Association of the fellow and research groups skills at the chemistry-photophysics-imaging interface, available infrastructure and equipment, will participate to both the fellow’s future independent research career and achieving ambitious AURORA objectives.