Application Aware, Life-Cycle Oriented Model-Hardware Co-Design Framework for S...
Application Aware, Life-Cycle Oriented Model-Hardware Co-Design Framework for Sustainable, Energy Efficient ML Systems
AI is increasingly becoming a significant factor in the CO2 footprint of the European economy. To avoid a conflict between sustainability and economic competitiveness and to allow the European economy to leverage AI for its leade...
ver más
PROYECTOS Y SISTEMAS DE MANTENIMIENTO
Consultoria tecnica, estudios de viabilidad, tecnicos, informes, auditorias funcionales y planes de sistemas de proyectos telematicos.
TRL
4-5
| 1M€
Fecha límite participación
Sin fecha límite de participación.
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
JDC2023-052484-I
Greener Computation: exploiting the power of AI to achieve a...
72K€
Cerrado
TED2021-132513B-I00
HACIA UNA IA SOSTENIBLE: APRENDIZAJE CONTINUO PARA EL ENTREN...
260K€
Cerrado
TED2021-130295B-C32
REDUCIR, REUTILIZAR, Y RECICLAR MODELOS LINGUISTICOS GRANDES...
135K€
Cerrado
TRUST-ML
Trust-ML: An Optimization-based Platform for Building Trust...
231K€
Cerrado
SLING
Efficient algorithms for sustainable machine learning
2M€
Cerrado
PRE2021-100288
APRENDIZAJE PROFUNDO Y APRENDIZAJE ONLINE EXPLICABLES PARA S...
101K€
Cerrado
Información proyecto SustainML
Duración del proyecto: 39 meses
Fecha Inicio: 2022-06-20
Fecha Fin: 2025-09-30
Líder del proyecto
PROYECTOS Y SISTEMAS DE MANTENIMIENTO
Consultoria tecnica, estudios de viabilidad, tecnicos, informes, auditorias funcionales y planes de sistemas de proyectos telematicos.
TRL
4-5
| 1M€
Presupuesto del proyecto
4M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
AI is increasingly becoming a significant factor in the CO2 footprint of the European economy. To avoid a conflict between sustainability and economic competitiveness and to allow the European economy to leverage AI for its leadership in a climate friendly way, new technologies to reduce the energy requirements of all parts of AI system are needed. A key problem is the fact that tools (e.g. PyTorch) and methods that currently drive the rapid spread and democratization of AI prioritize performance and functionality while paying little attention to the CO2 footprint. As a consequence, we see rapid growth in AI applications, but not much so in AI applications that are optimized for low power and sustainability. To change that we aim to develop an interactive design framework and associated models, methods and tools that will foster energy efficiency throughout the whole life-cycle of ML applications: from the design and exploration phase that includes exploratory iterations of training, testing and optimizing different system versions through the final training of the production systems (which often involves huge amounts of data, computation and epochs) and (where appropriate) continuous online re-training during deployment for the inference process. The framework will optimize the ML solutions based on the application tasks, across levels from hardware to model architecture. AI developers from all experience levels will be able to make use of the framework through its emphasis on human-centric interactive transparent design and functional knowledge cores, instead of the common blackbox and fully automated optimization approaches in AutoML. The framework will be made available on the AI4EU platform and disseminated through close collaboration with initiatives such as the ICT 48 networks. It will also be directly exploited by the industrial partners representing various parts of the relevant value chain: from software framework, through hardware to AI services.