In three dimensional systems, elementary particles are divided exclusively between fermions (which exclude each others) and bosons (which bunch together) according to the phase acquired by the wavefunction when two particles are e...
In three dimensional systems, elementary particles are divided exclusively between fermions (which exclude each others) and bosons (which bunch together) according to the phase acquired by the wavefunction when two particles are exchanged. The situation is different in two-dimensional systems which can host new particles called anyons, for which the exchange phase can take any value, and which obey partial exclusion, between fermions and bosons. Interestingly, these quasiparticles keep a memory of the exchanges between them that is protected from local perturbations of their trajectories: one speaks of topological protection. This protection is at the heart of the interest for anyons, as specific types of anyons called non-abelian are the building blocks of topological quantum computing that would be protected from decoherence.
The existence of these quasiparticles was predicted forty years ago in two-dimensional conductors in the fractional quantum Hall regime. However, despite intense experimental and theoretical efforts, direct signatures of their fractional statistics have only been observed recently, offering only now the possibility to characterize fractional statistics and to exploit it for new functionalities.
The purpose of this project is to quantitatively investigate the statistics of anyons by probing their tendency to bunch together or exclude each others in a nanoscale collider. The different phases of the fractional quantum Hall effect offer a very vast and almost completely unexplored variety of anyons. I will characterize the differences between different statistics, including the most interesting non-abelian case. I will also investigate the robustness of the signatures of fractional statistics and to which extent they can be considered as topologically protected. Finally, I will probe anyon statistics in the time-domain regime, where anyon emission is dynamically controlled, which is a necessary condition for quantum information perspectives.ver más
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
04-11-2024:
PERTE-AGRO2
Se ha cerrado la línea de ayuda pública: PERTE del sector agroalimentario
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.