Antiferromagnetic straintronics towards an non volatile all voltage controlled...
Antiferromagnetic straintronics towards an non volatile all voltage controlled memory device
The holy grail of magnetic storage research is the discovery of novel all-voltage controlled magnetic metamaterials that enable to develop a universal memory device that simultaneously meet high-power-efficiency and ultra-high sto...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
2D-OPTOSPIN
Spins in two-dimensional materials for tunable magnetic and...
2M€
Cerrado
SAHAJ
Strain-Free All Heusler Alloy Junctions
3M€
Cerrado
MAT2015-73839-JIN
MEMORIAS ANTIFERROMAGNETICAS ROBUSTAS DE BAJO CONSUMO
205K€
Cerrado
FAST
Fast electronics with Antiferromagnetic SpinTronics
159K€
Cerrado
CNS2023-144681
Materiales con funcionalidad eléctrica, magnética, óptica o...
200K€
Cerrado
Duración del proyecto: 30 meses
Fecha Inicio: 2017-03-20
Fecha Fin: 2019-09-30
Líder del proyecto
UNIVERSITY OF LEEDS
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
195K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The holy grail of magnetic storage research is the discovery of novel all-voltage controlled magnetic metamaterials that enable to develop a universal memory device that simultaneously meet high-power-efficiency and ultra-high storage capacity. Antiferromagnetic (AFM) materials could represent the future of spintronic applications as a result of the numerous interesting features they combine, e.g. they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast dynamics and are capable of generating large magneto-transport effects. However, the truly distinctive feature posed by AFM materials when compared to ferromagnetic ones is its modulated magnetic order, which is marginally exploited in spintronics applications.
The PiezoSpin project seeks to demonstrate a novel proof-of-concept for an innovative universal ultra-high power-efficient AFM-based spintronics memory device, which has the potential for transforming the ferromagnetic-dominated magnetic data storage technology. We will produce hybrid FeRh-based alloy/ferroelectric (FE) heterostructures, where the FeRh-based alloy overlayer will act as a resistive-switch driven by the FE underlayer acting as a voltage-controlled actuator. We will investigate the strain-dependent electrical resistivity of the FeRh-based alloy on the applied voltage. This piezo-magnetoresistivity effect will be optimized by chemical doping of the FeRh-based alloy to maximize that strain-dependent resistivity change at room temperature. This novel hybrid device concept exploits the strain-dependent giant magnetoresistance that appears in spin-orbit coupled (anisotropic) AFMs. Its origin resides in the superzones band-gap effect as a result of the onset of modulated magnetic order. Such piezo-magnetoresistivity effect is shared by numerous AFMs, opening up a new research field, i.e. AFM-based strain-electronics, where the material combinations and functionalities to explore are immense.