Conducting polymer (CP) based thermoelectric materials (TE) gained significant interest from the scientific community due to their natural advantages such as low cost, high flexibility, lightweight and low toxicity over inorganic...
Conducting polymer (CP) based thermoelectric materials (TE) gained significant interest from the scientific community due to their natural advantages such as low cost, high flexibility, lightweight and low toxicity over inorganic materials, which is beneficial for wearable or portable devices. Despite the benefits of organic TE materials, their low electrical conductivity reduces the TE performance and hinders commercialization. Chemical doping can be used to improve the electrical conductivity of CPs as it increases the charge carrier (polarons) concentration. However, the main limiting factor of electrical conductivity in organic semiconductors is their poor structural order and crystallinity. In addition, the strong coulombic attraction between the formed polarons (carriers) and the dopant counter ions hinders carrier delocalization, further limiting the TE performance. AnisoTEP will focus on developing highly conducting and crystalline polymer thin films to achieve high TE performance. We will use methods based on epitaxial orientation and mechanical rubbing to prepare oriented and crystalline P3HT thin films. Once oriented and crystallized, thin films will be doped by unique dopants based on dodecaborane (DDB) clusters, which stabilize their electron density in their core, and the negative charge of the DDB anions stays far away from the polarons, leading to a more delocalized polaron and high conductivity. Novel doping strategies based on ion exchange will be used to introduce counter ions of different ionic radii into P3HT to investigate the impact of counterion size on the polaron delocalization and TE performance. All the anisotropic TE parameters will be estimated, including the anisotropy in thermal conductivity and the final ZT anisotropy. This work would be the first attempt to experimentally determine the mobility anisotropy and charge transport mechanism in oriented polymers by AC Hall effect measurement.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.