Innovating Works

AMPHIBIAN

Financiado
Anisometric permanent hybrid magnets based on inexpensive and non critical mater...
Permanent magnets are crucial in modern technology as they allow storing, delivering and converting energy. They are able to transform electrical energy into mechanical and vice versa, which means that improving their performance... Permanent magnets are crucial in modern technology as they allow storing, delivering and converting energy. They are able to transform electrical energy into mechanical and vice versa, which means that improving their performance entails transforming energy in a more efficient and sustainable way. The best magnets are based on rare-earths (RE), however, their status as a Critical Raw Material (CRM) has brought forward the realization that it is of great strategic, geographic, environmental and socio-economic importance to consider alternative magnets that present a reduced amount (or absence) of RE. One of the most sought approaches towards this goal consists on constructing composite magnetic materials magnetically coupled at the interface. In the framework of the success of a previous European Project (FP7-SMALL-NANOPYME-310516), focused on improving ferrite-based magnets, we developed a low-cost novel approach (Patent P201600092) that exploits the magnetostatic interactions within these composites and that yielded extremely promising results in the form of an experimental proof-of-concept. The goal of this project is to implement up-scalable and cost-efficient methods for fabrication of ferrite-based dense anisotropic magnets with a 40% enhanced magnetic performance (energy products above 55 kJ/m3) with respect to commercial ferrites. We aim at producing improved magnets that retain the advantages of ferrites –availability, sustainability, cost, recyclability, eco-friendliness- and which have the potential to substitute currently used RE magnets (CRM) in the electric power system. Our targeted application is an electric energy storage device: we will substitute RE magnets by AMPHIBIAN ones in a demonstrator of a flywheel and evaluate its performance against cost, eco-friendliness and resource efficiency criteria. ver más
31/12/2019
5M€
Duración del proyecto: 37 meses Fecha Inicio: 2016-11-14
Fecha Fin: 2019-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2019-12-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 5M€
Líder del proyecto
AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGA... Investigaciones agrarias
Perfil tecnológico TRL 2-3 552M