Innovating Works

ACE-OF-SPACE

Financiado
Analysis control and engineering of spatiotemporal pattern formation
A central problem in developmental biology is to understand how tissues are patterned in time and space - how do identical cells differentiate to form the adult body plan? Patterns often arise from prior asymmetries in developing... A central problem in developmental biology is to understand how tissues are patterned in time and space - how do identical cells differentiate to form the adult body plan? Patterns often arise from prior asymmetries in developing embryos, but there is also increasing evidence for self-organizing mechanisms that can break the symmetry of an initially homogeneous cell population. These patterning processes are mediated by a small number of signaling molecules, including the TGF-β superfamily members BMP and Nodal. While we have begun to analyze how biophysical properties such as signal diffusion and stability contribute to axis formation and tissue allocation during vertebrate embryogenesis, three key questions remain. First, how does signaling cross-talk control robust patterning in developing tissues? Opposing sources of Nodal and BMP are sufficient to produce secondary zebrafish axes, but it is unclear how the signals interact to orchestrate this mysterious process. Second, how do signaling systems self-organize to pattern tissues in the absence of prior asymmetries? Recent evidence indicates that axis formation in mammalian embryos is independent of maternal and extra-embryonic tissues, but the mechanism underlying this self-organized patterning is unknown. Third, what are the minimal requirements to engineer synthetic self-organizing systems? Our theoretical analyses suggest that self-organizing reaction-diffusion systems are more common and robust than previously thought, but this has so far not been experimentally demonstrated. We will address these questions in zebrafish embryos, mouse embryonic stem cells, and bacterial colonies using a combination of quantitative imaging, optogenetics, mathematical modeling, and synthetic biology. In addition to providing insights into signaling and development, this high-risk/high-gain approach opens exciting new strategies for tissue engineering by providing asymmetric or temporally regulated signaling in organ precursors. ver más
30/06/2026
2M€
Duración del proyecto: 76 meses Fecha Inicio: 2020-02-18
Fecha Fin: 2026-06-30

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-02-18
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 2M€
Líder del proyecto
UNIVERSITAT KONSTANZ No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5