An eXtreme Mesh deformation method to follow sharp physical interfaces
This project will develop an innovative approach,
X-MESH, to overcome a major difficulty associated with engineering
analysis: we aim to provide a revolutionary way to track physical
interfaces in finite element simulations using...
ver más
Descripción del proyecto
This project will develop an innovative approach,
X-MESH, to overcome a major difficulty associated with engineering
analysis: we aim to provide a revolutionary way to track physical
interfaces in finite element simulations using extreme deformation of
the meshes.
Unprecedented low computational cost, high robustness and
accuracy are expected as the proposed approach is designed to avoid
the pitfalls of the current methods, especially for topological changes.
The key idea of the project
has emerged in a synergistic brainstorming between J.-F. Remacle
(meshing methods) and N. Moës (computational methods). This key idea
is to allow elements to deform up to zero measure. For example, a
triangle can deform to an edge or even a point. This idea is rather
extreme and totally revisits the interaction between the meshing
community and the computational community who, for decades, have
striven to interact through beautiful meshes.
Six areas in fluid and solid mechanics as well as heat
transfer are targeted. Interfaces will be either (i) material,
i.e. attached to particles of matter (the interface between two
immiscible fluids or the dry interface in a wetting and drying model)
(ii) immaterial, i.e. migrating through the material (a
solidification front, contact front, yield front in yield stress fluid
flow or a crack front).
Successes brought by X-MESH are expected in the following engineering
areas: safety design and maintenance, manufacturing processes, coastal
engineering, energy efficiency, ocean modeling to cite a few. The
project takes place in a stimulating environment mixing senior staff
with PhDs and Post-docs to produce and disseminate publications with
open source pieces of software. It also intends to create a synergy at
large with the computational communities dealing with interfaces and
fronts in all fields of science: topology optimization,
superconductivity, tissue growth, hydrogel swelling, crystal growth,
ferroelectric crystal etc.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.