Innovating Works

BoneScreen

Financiado
An ex vivo platform to screen drug effects on bone
Drug development remains a long and costly process with low success rates in clinical trials. While a majority of cell-based compound screenings are still based on 2D experiments, compelling evidence suggests that 3D culture techn... Drug development remains a long and costly process with low success rates in clinical trials. While a majority of cell-based compound screenings are still based on 2D experiments, compelling evidence suggests that 3D culture technologies will accommodate for a better precision in drug discovery. On the other hand, such screening cultures are particularly challenging in terms of 3D visualization. In the BoneScreen project, we propose to develop a high content screening (HCS) platform capable of identifying drugs that alter the reaction of bone cells in terms of bone formation and/or resorption (called bone remodeling). Abnormal bone remodeling is the primary cause of bone diseases such as osteoporosis. Limitations in the development of effective therapeutics for bone remodeling disorders are that the interplay between the bone cells has been ignored, as well as their 3D environment. The micro-computed tomography based monitoring technology of the BoneScreen project is combined with an ex vivo 3D osteochondral system preserving the viability and interactions of tissue-specific cells and their environment. Drug effects are validated in this ex vivo platform by comparison with known drug effects on bone. This system will allow reducing the number of animal experiments needed in drug discovery for bone diseases, as promising leads can first be screened ex vivo before being investigated in vivo. Its experimental design is cost-effective and acceptable in terms of animal welfare and in accordance with the 3Rs. We aim to assess and demonstrate its commercial value to the pharmaceutical industry by building a strong knowledge transfer strategy and by further exploring the platform for potential other applications. In conclusion, the BoneScreen platform has a great fundamental and commercial potential in various fields such as drug discovery for bone diseases. ver más
28/02/2022
150K€
Duración del proyecto: 21 meses Fecha Inicio: 2020-05-25
Fecha Fin: 2022-02-28

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2022-02-28
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 150K€
Líder del proyecto
TECHNISCHE UNIVERSITEIT EINDHOVEN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5