An embryo transfer decision support tool optimizes live birth rates in IVF treat...
In vitro fertilization (IVF) treatments are markedly inefficient since a significant fraction of embryos lacks the capacity to implant. Even for successfully implanted embryos, one out of nine clinical pregnancies is terminated du...
In vitro fertilization (IVF) treatments are markedly inefficient since a significant fraction of embryos lacks the capacity to implant. Even for successfully implanted embryos, one out of nine clinical pregnancies is terminated due to first trimester miscarriage. In general, embryos that harbor certain chromosomal abnormalities leading to early pregnancy loss often permit normal preimplantation development that cannot be detectable via human visualization of time lapse images. Since current state-of-the-art algorithms fail to accurately assess the developmental potential of embryos to reach live birth, reasonable pregnancy rates are obtained by transferring more than one embryo to the uterus. However, multiple pregnancy (of more than one embryo), which account for 30-to-40% of all pregnancies (>95% are twins), are associated with a higher health risk to the mother and to the newborn. Here I propose to develop an embryo-transfer decision-support tool (ET-DST) that will analyze all possible embryo-transfer strategies that include multiple transfer cycles of embryos of the same patient. The ET-DST will identify the transfer strategy that optimizes the potential to reach live-birth and shorten time-to-pregnancy by combining multiple classifiers that evaluate the potential of embryos to implant, assess the risk of miscarriage, and predict the optimal day of transfer. The physician/embryologist will be able to set both embryo-specific parameters and maternal labels as follows: (1) a penalty of multiple pregnancies, (2) a cryopreservation factor that reflects the decrease in embryo quality due to verification and thawing compared with fresh transfer, (3) a maternal factor that reflects the clinical background of the patient, and (4) a penalty of multiple transfer cycles. The integration of patient specific parameters will minimize health risks while optimizing live-birth rates and shortening time-to-pregnancy.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.