Algebraic Machine Learning (AML) has recently been proposed as new learning paradigm that builds upon Abstract Algebra, Model Theory. Unlike other popular learning algorithms, AML is not a statistical method, but it produces gener...
Algebraic Machine Learning (AML) has recently been proposed as new learning paradigm that builds upon Abstract Algebra, Model Theory. Unlike other popular learning algorithms, AML is not a statistical method, but it produces generalizing models from semantic embeddings of data into discrete algebraic structures, with the following properties:
P1: Is far less sensitive to the statistical characteristics of the training data and does not fit (or even use) parameters
P2: Has the potential to seamlessly integrate unstructured and complex information contained in training data, with a formal representation of human knowledge and requirements;
P3. Uses internal representations based on discrete sets and graphs, offering a good starting point for generating human understandable, descriptions of what, why and how has been learned
P4. Can be implemented in a distributed way that avoids centralized, privacy-invasive collections of large data sets in favor of a collaboration of many local learners at the level of learned partial representations.
The aim of the project is to leverage the above properties of AML for a new generation of Interactive, Human-Centric Machine Learning systems., that will:
- Reduce bias and prevent discrimination by reducing dependence on statistical properties of training data (P1), integrating human knowledge with constraints (P2), and exploring the how and why of the learning process (P3)
- Facilitate trust and reliability by respecting ‘hard’ human-defined constraints in the learning process (P2) and enhancing explainability of the learning process (P3)
- Integrate complex ethical constraints into Human-AI systems by going beyond basic bias and discrimination prevention (P2) to interactively shaping the ethics related to the learning process between humans and the AI system (P3)
- Facilitate a new distributed, incremental collaborative learning method by going beyond the dominant off-line and centralized data processing approach (P4)ver más
Presupuesto
El presupuesto total del proyecto asciende a
4M€
Líder del proyecto
PROYECTOS Y SISTEMAS DE MANTENIMIENTO
Consultoria tecnica, estudios de viabilidad, tecnicos, informes, auditorias funcionales y planes de sistemas de proyectos telematicos.
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
04-11-2024:
PERTE-AGRO2
Se ha cerrado la línea de ayuda pública: PERTE del sector agroalimentario
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.