All-in-one solar rechargeable Zinc-air battery enabling direct storage of solar...
All-in-one solar rechargeable Zinc-air battery enabling direct storage of solar energy
As photovoltaics (PV) technology develops rapidly, solar energy conversion and storage devices such as solar rechargeable batteries are also becoming more viable to compensate for intermittent sunlight. Considering their working l...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-117626RA-I00
APROVECHAMIENTO DE SISTEMAS BIOLOGICOS PARA EL DESARROLLO DE...
119K€
Cerrado
PCI2022-132992
NEXT GENERATION RECHARGEABLE AND SUSTAINABLE ZINC-AIR BATTER...
250K€
Cerrado
ZABCAT
A New Zn Air Battery Prototype to Overcome Cathode Degradati...
150K€
Cerrado
TED2021-131451B-C22
PROTOTIPO AVANZADO DE BATERIA DE ZINC-AIRE PARA EL HORIZONTE...
235K€
Cerrado
RYC2020-030104-I
Development of high-performing and sustainable rechargeable...
324K€
Cerrado
PTQ-14-07037
Cátodos de Alta Eficiencia para baterías recargables de meta...
76K€
Cerrado
Información proyecto HESOZA
Duración del proyecto: 35 meses
Fecha Inicio: 2023-07-06
Fecha Fin: 2026-06-30
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
As photovoltaics (PV) technology develops rapidly, solar energy conversion and storage devices such as solar rechargeable batteries are also becoming more viable to compensate for intermittent sunlight. Considering their working life, cost, energy density, safety and eco-friendliness, rechargeable Zn–air batteries (ZABs) are regarded as a promising candidate for next generation advanced energy devices. Solar rechargeable ZABs would effectively convert and store solar energy in one two-electrode battery, simplifying the configuration and decreasing the external energy loss. Yet, there are several major challenges to widespread adoption of solar rechargeable ZABs: (i) low efficiency due to lack of high performance photoactive electrode capable of light harvesting and energy storage, (ii) instability and low cycle life due to anode-electrolyte side reactions. This proposal will develop for the first-time ZABs with solar-charging capabilities through combinatorial designing of a bifunctional high entropy material (HEM) photocathode-catalyst, fabricating a gradient nanoporous fluorinated zinc-tin (FZT) anode and optimizing electrolyte composition. Such a configuration enables to decrease the charge overpotential of ZABs below the theoretical voltageof 1.65 V. More importantly, it directly stores solar-to-electrochemical energy. Therefore, the main goal of this proposal is to boost the efficiency and stability of solar rechargeable ZABs by taking advantages of HEM concept i.e., numerous active sites, sluggish diffusion, and enabling much improved plating/stripping cycling on FZT anode through a 2e−/O2 process in nonalkaline aqueous electrolyte. HESOZA’s achievements will make advancements on cutting edge direct solar-to-electrochemical energy storage in a simple two-electrode cell configuration that are pivotal to reach EU’s environmental targets for a reliable and green energy transition at low-cost.