The goal of the project is to develop the technology foundation for an advanced optical microscope imaging at a resolution beyond the Rayleigh limit, which is set by the photon wavelength. The proposed microscope technique is base...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
ODeLiCs
On-demand generation of multi-photon linear cluster state
215K€
Cerrado
CLERMONT4
Exciton polaritons in microcavities physics and devices
4M€
Cerrado
TOPOPOLIS
Topological Polaritons in Semiconductor Photonic Crystal Str...
159K€
Cerrado
GRASP
GRAPHENE BASED SINGLE PHOTON NONLINEAR OPTICAL DEVICES
3M€
Cerrado
EXPHON
Exciton Phonon Coupling from First Principles
159K€
Cerrado
QIT4QAD
Photonic Quantum Information Technology and the Foundations...
2M€
Cerrado
Información proyecto SUPERTWIN
Duración del proyecto: 47 meses
Fecha Inicio: 2015-11-16
Fecha Fin: 2019-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The goal of the project is to develop the technology foundation for an advanced optical microscope imaging at a resolution beyond the Rayleigh limit, which is set by the photon wavelength. The proposed microscope technique is based on super-twinning photon states (N-partite entangled states) with the de Broglie wavelength equal to a fraction of the photon wavelength. Such microscopy technique will comprise building blocks for object illumination, capturing of scattered twinning photons and data processing. Based on advanced group-III nitride and III-V alloy epitaxial growths and wafer processing techniques we will build the first solid-state emitter of highly entangled photon states, utilizing the cooperative effect of Dicke superradiance (super-fluorescence) emission. Single-photon avalanche detector arrays with data pre-processing capabilities sufficient for capturing high-order field correlation functions of scattered twinning photons will be developed. A dedicated data processing algorithm for extracting the image of an illuminated object from the statistics of scattered twinning photons will complement the hardware. The project goal is to demonstrate imaging at 42 nm spatial resolution using 5-partite entangled photons at 420 nm wavelength. This quantum imaging technology will open the way for compact, portable, super-resolution microscope techniques, with no moving parts and no requirements to the optical properties of the sample.