Innovating Works

COLOR-UP

Financiado
All optical sub THz signal filtering with multi COLOR lasers
MicroWave Photonics (MWP) has been delivering on-chip devices with outstanding performances to answer the demand of Information and Communication Technologies for always faster, more efficient and more compact systems. Yet, some s... MicroWave Photonics (MWP) has been delivering on-chip devices with outstanding performances to answer the demand of Information and Communication Technologies for always faster, more efficient and more compact systems. Yet, some stringent limitations form a roadblock for disruptive specifications: for instance, on-chip MWP frequency filters hardly perform beyond 60 GHz, whereas the technology and applications require frequencies in the sub-THz range from 100 GHz to several THz. This frequency band will directly support future ultra-fast telecom systems, but also sensing techniques such as THz spectroscopy e.g. for food contaminant detection or mm-precision RADARs for robotic systems. With COLOR'UP, my goal is to remove this frequency roadblock by exploring and implementing on-chip a radically new concept exploiting the nonlinear dynamics of multi-colour lasers. These lasers naturally generate a set of sharp beat-notes in the sub-THz range corresponding to the frequency separation between the different wavelengths. Injecting an optical beam in a multi-colour laser with a modulation at well-chosen frequencies can lead to injection-locking of all wavelengths simultaneously. Spectral components that are not matching the beat-notes will however not be picked up and will be filtered out in the laser output. In this project, I will demonstrate that this effect can be exploited to create all-optical on-chip MWP bandpass filters with the capability to cover the entire sub-THz range from tens of GHz, up to a few THz. My goals are four-fold: (1) design and realize multi-colour lasers with tailored spectra to achieve filtering at precise frequencies (2) study the underlying filtering mechanism to optimize the filter performances (3) develop on-chip control techniques based on optical feedback to control the filter properties (4) make a Proof-of-Concept demonstration of the filter on an InP photonic integrated circuit emitting in the telecom band, around the 1.55 um wavelength ver más
31/10/2025
VUB
1M€
Duración del proyecto: 61 meses Fecha Inicio: 2020-09-04
Fecha Fin: 2025-10-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2020-09-04
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
ERC-2020-STG: ERC STARTING GRANTS
Cerrada hace 5 años
Presupuesto El presupuesto total del proyecto asciende a 1M€
Líder del proyecto
VRIJE UNIVERSITEIT BRUSSEL No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5