All optical sub THz signal filtering with multi COLOR lasers
MicroWave Photonics (MWP) has been delivering on-chip devices with outstanding performances to answer the demand of Information and Communication Technologies for always faster, more efficient and more compact systems. Yet, some s...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
RTI2018-094475-B-I00
METASUPERFICIES DE TERAHERCIOS PARA DISPOSITIVOS DE COMUNICA...
136K€
Cerrado
TEC2013-47753-C3-3-R
DIDACTIC: DESARROLLO DE UN SISTEMA DE COMUNICACIONES INALAMB...
108K€
Cerrado
TEC2016-76997-C3-3-R
GENERACION FOTONICA DE SEÑAL PARA MODULOS TRANSMISORES Y REC...
79K€
Cerrado
TEC2016-76997-C3-1-R
MODULOS TRANSMISORES Y RECEPTORES INTEGRADOS DE COMUNICACION...
210K€
Cerrado
TEC2013-47753-C3-1-R
DESARROLLO DE UN SISTEMA INTEGRADO DE COMUNICACIONES INALAMB...
150K€
Cerrado
LAA-THz-CC
Lens Antenna Arrays for Coherent THz Cameras
1M€
Cerrado
Información proyecto COLOR-UP
Duración del proyecto: 61 meses
Fecha Inicio: 2020-09-04
Fecha Fin: 2025-10-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
MicroWave Photonics (MWP) has been delivering on-chip devices with outstanding performances to answer the demand of Information and Communication Technologies for always faster, more efficient and more compact systems. Yet, some stringent limitations form a roadblock for disruptive specifications: for instance, on-chip MWP frequency filters hardly perform beyond 60 GHz, whereas the technology and applications require frequencies in the sub-THz range from 100 GHz to several THz. This frequency band will directly support future ultra-fast telecom systems, but also sensing techniques such as THz spectroscopy e.g. for food contaminant detection or mm-precision RADARs for robotic systems.
With COLOR'UP, my goal is to remove this frequency roadblock by exploring and implementing on-chip a radically new concept exploiting the nonlinear dynamics of multi-colour lasers. These lasers naturally generate a set of sharp beat-notes in the sub-THz range corresponding to the frequency separation between the different wavelengths. Injecting an optical beam in a multi-colour laser with a modulation at well-chosen frequencies can lead to injection-locking of all wavelengths simultaneously. Spectral components that are not matching the beat-notes will however not be picked up and will be filtered out in the laser output.
In this project, I will demonstrate that this effect can be exploited to create all-optical on-chip MWP bandpass filters with the capability to cover the entire sub-THz range from tens of GHz, up to a few THz. My goals are four-fold: (1) design and realize multi-colour lasers with tailored spectra to achieve filtering at precise frequencies (2) study the underlying filtering mechanism to optimize the filter performances (3) develop on-chip control techniques based on optical feedback to control the filter properties (4) make a Proof-of-Concept demonstration of the filter on an InP photonic integrated circuit emitting in the telecom band, around the 1.55 um wavelength