Algorithms and Complexity of Constraint Satisfaction Problems
Constraint satisfaction problems (CSP) form a general framework that captures a large variety of algorithmic problems. Due to their generality, CSPs are ubiquitous in several areas such as, for example, artificial intelligence, da...
Constraint satisfaction problems (CSP) form a general framework that captures a large variety of algorithmic problems. Due to their generality, CSPs are ubiquitous in several areas such as, for example, artificial intelligence, database theory and statistical physics. Therefore it is not surprising that their study is of prominent importance also in computational complexity theory. The proposed research aims at studying algorithmic issues related to CSPs from the perspective of computational complexity. The project consists of two parts.
Firstly, we intend to widen the current understanding of algorithmic approaches to solving CSPs with a particular focus on the propositional satisfiability problem SAT. Recent years have seen an immense increase in the efficiency of practical algorithms solving the propositional satisfiability problem - so-called SAT solvers. Today we still do only have a limited understanding of the reasons for this increase.
We will study these reasons. This will, among other things, include studying structural restrictions of input formulas which are likely to be relevant in practice. Along similar lines we will also examine the capabilities of other algorithmic approaches which are applicable to CSPs in general.
Secondly, we will study weighted extensions of CSPs from a structural point of view. Over the past few years, these versions of CSPs have received increased attention in the context of counting complexity. A main motivation for studying them arises from their connection to so-called spin glass models from statistical physics. Although we have a quite good understanding of the complexity of exactly computing them, we still have only little knowledge of the extent to which these weighted versions of CSPs can be approximated efficiently. The research project aims at extending this knowledge significantly.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.