Algorithmic Development and Analysis of Pioneer Techniques for Imaging with waVE...
Algorithmic Development and Analysis of Pioneer Techniques for Imaging with waVES
The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Ou...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The proposed work concerns the theoretical and numerical development of robust and adaptive methodologies for broadband imaging in clutter. The word clutter expresses our uncertainty on the wave speed of the propagation medium. Our results are expected to have a strong impact in a wide range of applications, including underwater acoustics, exploration geophysics and ultrasound non-destructive testing. Our machinery is coherent interferometry (CINT), a state-of-the-art statistically stable imaging methodology, highly suitable for the development of imaging methods in clutter. We aim to extend CINT along two complementary directions: novel types of applications, and further mathematical and numerical development so as to assess and extend its range of applicability. CINT is designed for imaging with partially coherent array data recorded in richly scattering media. It uses statistical smoothing techniques to obtain results that are independent of the clutter realization. Quantifying the amount of smoothing needed is difficult, especially when there is no a priori knowledge about the propagation medium. We intend to address this question by coupling the imaging process with the estimation of the medium's large scale features. Our algorithms rely on the residual coherence in the data. When the coherent signal is too weak, the CINT results are unsatisfactory. We propose two ways for enhancing the resolution of CINT: filter the data prior to imaging (noise reduction) and waveform design (optimize the source distribution). Finally, we propose to extend the applicability of our imaging-in-clutter methodologies by investigating the possibility of utilizing ambient noise sources to perform passive sensor imaging, as well as by studying the imaging problem in random waveguides.