Our field is cryptology. Our overarching objective is to advance significantly the frontiers in
design and analysis of high-security cryptography for the future generation.
Particularly, we wish to enhance the efficiency, functi...
Our field is cryptology. Our overarching objective is to advance significantly the frontiers in
design and analysis of high-security cryptography for the future generation.
Particularly, we wish to enhance the efficiency, functionality, and, last-but-not-least, fundamental understanding of cryptographic security against very powerful adversaries.
Our approach here is to develop completely novel methods by
deepening, strengthening and broadening the
algebraic foundations of the field.
Concretely, our lens builds on
the arithmetic codex. This is a general, abstract cryptographic primitive whose basic theory we recently developed and whose asymptotic part, which relies on algebraic geometry, enjoys crucial applications in surprising foundational results on constant communication-rate two-party cryptography. A codex is a linear (error correcting) code that, when endowing its ambient vector space just with coordinate-wise multiplication, can be viewed as simulating, up to some degree, richer arithmetical structures such as finite fields (or products thereof), or generally, finite-dimensional algebras over finite fields. Besides this degree, coordinate-localities for which simulation holds and for which it does not at all are also captured.
Our method is based on novel perspectives on codices which significantly
widen their scope and strengthen their utility. Particularly, we bring
symmetries, computational- and complexity theoretic aspects, and connections with algebraic number theory, -geometry, and -combinatorics into play in novel ways. Our applications range from public-key cryptography to secure multi-party computation.
Our proposal is subdivided into 3 interconnected modules:
(1) Algebraic- and Number Theoretical Cryptanalysis
(2) Construction of Algebraic Crypto Primitives
(3) Advanced Theory of Arithmetic Codicesver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.