Applications of rank-metric codes arise ever more frequently in network communications problems, and yet their mathematical theory is still in its infancy. To date attention has almost exclusively focussed on very special classes...
ver más
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
Applications of rank-metric codes arise ever more frequently in network communications problems, and yet their mathematical theory is still in its infancy. To date attention has almost exclusively focussed on very special classes of codes and their generalizations.
The covering problem for rank-metric codes is largely unsolved, and is an important combinatorial research topic. For error-free paradigms, codes with low covering radius provide efficient solutions for broadcast problems, and specifically to optimizing content delivery networks for large files distribution. Current approaches to such applications are suboptimal, while known methods to obtaining best possible performance are computationally infeasible. For error-correcting schemes, the covering radius is an important indicator of code performance, as it measures the number of errors that can be corrected in network transmissions.
We propose to develop a mathematical theory of covering codes for the rank metric. We will obtain bounds on the covering radius of an arbitrary rank-metric code, as well as special classes of codes. We will develop the fundamental tools required to pioneer this theory, offering scope for researchers of Algebraic Coding Theory, as well as combinatorial objects useful for Engineering applications. We will also investigate symmetric rank-metric codes, focussing on their distance distributions. These codes have a very rich combinatorial structure.
The combined expertise of the Applied Algebra group at UCD, along with the methods developed by the applicant in his PhD, will propel the project to achieve its objectives. The potential scientific impact is high, given the newness and combinatorial hardness of the topic, its importance for network communications, and exponentially increasing data traffic. The impact for the applicant will be the opportunity to establish this fundamental topic, magnify his scientific profile, and consolidate/expand his professional network.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.