LA INVESTIGACION DE VANGUARDIA ACTUAL, EN NUMEROSAS DISCIPLINAS TANTO PURAS COMO APLICADAS, REQUIERE DEL CONOCIMIENTO DE LA TEORIA CLASICA DEL ALGEBRA DIFERENCIAL, JUNTO CON UN ENFOQUE MODERNO DE COMPUTACION SIMBOLICA. ESTE ENFOQU...
ver más
PGC2018-096504-B-C32
ORTOGONALIDAD Y APROXIMACION: TEORIA Y APLICACIONES EN FISIC...
36K€
Cerrado
Últimas noticias
27-11-2024:
Videojuegos y creaci...
Se abre la línea de ayuda pública: Ayudas para la promoción del sector del videojuego, del pódcast y otras formas de creación digital
27-11-2024:
DGIPYME
En las últimas 48 horas el Organismo DGIPYME ha otorgado 1 concesiones
Descripción del proyecto
LA INVESTIGACION DE VANGUARDIA ACTUAL, EN NUMEROSAS DISCIPLINAS TANTO PURAS COMO APLICADAS, REQUIERE DEL CONOCIMIENTO DE LA TEORIA CLASICA DEL ALGEBRA DIFERENCIAL, JUNTO CON UN ENFOQUE MODERNO DE COMPUTACION SIMBOLICA. ESTE ENFOQUE ES RELEVANTE EN EL TRATAMIENTO DE LAS ECUACIONES DIFERENCIALES MEDIANTE COMPUTACION SIMBOLICA, QUE ES UNA DE LAS PRINCIPALES LINEAS DE INVESTIGACION EN ALGEBRA COMPUTACIONAL, Y CONSTITUYE EL MARCO DE ESTE PROYECTO. EL OBJETIVO PRINCIPAL DE ESTE PROYECTO ES INVESTIGAR NUEVAS TECNICAS EN ALGEBRA DIFERENCIAL Y NO CONMUTATIVA CON DOS PROPOSITOS PRINCIPALES QUE ESTAN INTRINSECAMENTE RELACIONADOS.POR UN LADO, DESARROLLAR UNA TEORIA DE GALOIS PARA PROBLEMAS ESPECTRALES, DEFINIDOS POR OPERADORES DIFERENCIALES LINEALES ALGEBRO-GEOMETRICOS, CARACTERIZADOS POR TENER CENTRALIZADORES NO TRIVIALES, Y UN PARAMETRO ESPECTRAL REGIDO POR LA FAMOSA CURVA ESPECTRAL. SE HA DEFINIDO RECIENTEMENTE EL CUERPO DE PICARD-VESSIOT ESPECTRAL DE UN OPERADOR DE SEGUNDO ORDEN L PROPORCIONANDO UN NUEVO ENFOQUE AL PROBLEMA DE FACTORIZACION DE OPERADORES DIFERENCIALES ORDINARIOS EN TERMINOS DE PARAMETROS. LA GENERALIZACION AL CASO DE LOS OPERADORES DE ORDEN PRIMO APARECE DE FORMA NATURAL. EL CASO DE LOS OPERADORES DE TERCER ORDEN, QUE ESTAN ASOCIADOS A LA JERARQUIA INTEGRABLE DE BOUSSINEQ, ES UN PROBLEMA INTERESANTE QUE PRESENTA NUEVOS RETOS, Y QUE NO HA SIDO ABORDADO CON METODOS GALOISIANOS ANTERIORMENTE. LAS TECNICAS DESARROLLADAS EN ESTE PROYECTO NOS PERMITIRAN ESTUDIAR LA FACTORIZACION DE OPERADORES DE ORDEN PRIMO, CON EL FIN ULTIMO DE OBTENER RUTINAS COMPUTACIONALES, ESPECIALMENTE PARA CURVAS ESPECTRALES RACIONALES. ADEMAS, SE AMPLIARA LA TEORIA ESPECTRAL DE PICARD-VESSIOT, PARA ESTUDIAR LA RESOLUCION EN FORMA CERRADA DE LAS ECUACIONES DIFERENCIALES LINEALES DEFINIDAS POR OPERADORES DIFERENCIALES ORDINARIOS ALGEBRO-GEOMETRICOS DE ORDEN PRIMO.POR OTRO, APLICAR LOS METODOS DEL ALGEBRA DIFERENCIAL A LA TEORIA DE LOS OPERADORES DE RECURSION, EXTENDIENDOLOS A LOS OPERADORES MATRICIALES PSEUDO-DIFERENCIALES. EN PARTICULAR, INVESTIGAR EL PROBLEMA DE ENCONTRAR FACTORES COMUNES DE DIFERENTES OPERADORES DE RECURSION PARA DERIVAR RELACIONES ALGEBRAICAS ENTRE ELLOS. LAS RELACIONES ALGEBRAICAS ENTRE DIFERENTES OPERADORES DE RECURSION DE UNA ECUACION INTEGRABLE DADA MUESTRAN QUE EL ENFOQUE DE LA CURVA ESPECTRAL PUEDE ARROJAR LUZ SOBRE LA ESTRUCTURA DEL CONJUNTO DE OPERADORES DE RECURSION.ADEMAS DE DESARROLLAR LA TEORIA PARA DISEÑAR ALGORITMOS, ESTE PROYECTO INCLUIRA UNA IMPLEMENTACION FUNCIONAL EN UN SOFTWARE DE CODIGO ABIERTO. TAL IMPLEMENTACION PERMITIRA EL CALCULO EN ANILLOS DIFERENCIALES; AYUDARA A DEMOSTRAR LA VALIDEZ DE LA TEORIA; REALIZAR MAS EXPERIMENTOS PARA MEJORAR EL ESTADO DE LA TEORIA; Y PROPORCIONAR UN FACIL ACCESO A LOS RESULTADOS DE ESTOS PROYECTOS PARA OTROS CIENTIFICOS. LGEBRA DIFERENCIAL\COMPUTACION SIMBOLICA\INTEGRABILIDAD\TEORIA DE GALOIS DIFERENCIAL
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.