Airway Disease PRedicting Outcomes through Patient Specific Computational Modell...
The airways diseases asthma and chronic obstructive pulmonary disease affect over 400 million people world-wide and cause considerable morbidity and mortality. Airways disease costs the European Union in excess of €56 billion per...
The airways diseases asthma and chronic obstructive pulmonary disease affect over 400 million people world-wide and cause considerable morbidity and mortality. Airways disease costs the European Union in excess of €56 billion per annum. Current therapies are inadequate and we do not have sufficient tools to predict disease progression or response to current or future therapies. Our consortium, Airway Disease PRedicting Outcomes through Patient Specific Computational Modelling (AirPROM), brings together the exisiting clinical consortia (EvA FP7, U-BIOPRED IMI and BTS Severe Asthma), and expertise in physiology, radiology, image analysis, bioengineering, data harmonization, data security and ethics, computational modeling and systems biology. We shall develop an integrated multi-scale model building upon existing models. This airway model will be comprised of an integrated 'micro-scale' and 'macro-scale' airway model informed and validated by 'omic data and ex vivo models at the genome-transcriptome-cell-tissue scale and by CT and functional MRI imaging coupled to detailed physiology at the tissue-organ scale utilising Europe's largest airway disease cohort. Validation will be undertaken cross-sectionally, following interventions and after longitudinal follow-up to incorporate both spatial and temporal dimensions. AirPROM has a comprehensive data management platform and a well-developed ethico-legal framework. Critically, AirPROM has an extensive exploitation plan, involving at its inception and throughout its evolution those that will 'develop' and 'use' the technologies emerging from this project. AirPROM therefore will bridge the critical gaps in our clinical management of airways disease, by providing validated models to predict disease progression and response to treatment and the platform to translate these patient-specific tools, so as to pave the way to improved, personalised management of airways disease.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.