AI-based leukemia detection in routine diagnostic blood smear data
Acute promyelocytic leukemia is an extremely aggressive blood cancer where immediate diagnosis can determine life or death. The diagnostic state of the art is manual inspection of a patient’s blood smear under the microscope by tr...
Acute promyelocytic leukemia is an extremely aggressive blood cancer where immediate diagnosis can determine life or death. The diagnostic state of the art is manual inspection of a patient’s blood smear under the microscope by trained cytologists. It is prone to human error and time consuming - a risk factor in notoriously understaffed laboratories. Supporting clinical decisions with AI will drastically increase diagnostic speed and accuracy, benefit patient survival, and free up valuable expert time. This is particularly important for cytological and histological analysis, whose market size is expected to rise by a compounded annual growth rate of 14.7% in coming years. Yet, so far, the proof of concept that AI can be effectively employed for leukemia detection in routine diagnostics is missing.
I will leverage the methodological advancements in deep learning and explainable AI, the skills of my ERC CoG funded research group, and the expertise and data of the Munich Leukemia Laboratory (MLL), the largest leukemia laboratory in Europe and my long standing industry partner. Together, we will develop and implement LeukoScreen, an AI-based software to automatically identify and flag up acute leukemia cases from MLL’s routine laboratory input. This will decrease the diagnosis to treatment time of critical leukemia cases at reduced costs and staffing. Specifically, we will (i) deploy a real-world dataset from the routine input of the MLL, (ii) train and evaluate our algorithm for transparent decision making on routine diagnostic blood smears, (iii) quantify the gain in sensitivity, specificity, and speed by comparing LeukoScreen with the currently used manual workflow at MLL, and (iv) jointly develop a commercialization strategy for the exploitation of results.
This AI approach to support disease detection will save patients’ lives, change the paradigm of cytologic workflows, and create capacities in overburdened diagnostics.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.