Innovating Works

AIthena

Financiado
AI based CCAM Trustworthy Explainable and Accountable
Connected and Cooperative Automotive Mobility (CCAM) solutions have emerged thanks to novel Artificial Intelligence (AI) which can be trained with huge amounts of data to produce driving functions with better-than-human performanc... Connected and Cooperative Automotive Mobility (CCAM) solutions have emerged thanks to novel Artificial Intelligence (AI) which can be trained with huge amounts of data to produce driving functions with better-than-human performance under certain conditions. The race on AI keeps on building HW/SW frameworks to manage and process even larger real and synthetic datasets to train increasingly accurate AI models. However, AI remains largely unexplored with respect to explainability (interpretability of model functioning), privacy preservation (exposure of sensitive data), ethics (bias and wanted/unwanted behaviour), and accountability (responsibilities of AI outputs). These features will establish the basis of trustworthy AI, as a novel paradigm to fully understand and trust AI in operation, while using it at its full capabilities for the benefit of society. AITHENA will contribute to build Explainable AI (XAI) in CCAM development and testing frameworks, researching three main AI pillars: data (real/synthetic data management), models (data fusion, hybrid AI approaches), and testing (physical/virtual XiL set-ups with scalable MLOps). A human-centric methodology will be created to derive trustworthy AI dimensions from user identified group needs in CCAM applications. AITHENA will innovate proposing a set of Key Performance Indicators (KPI) on XAI, and an analysis to explore trade-offs between these dimensions. Demonstrators will show the AITHENA methodology in four critical use cases: perception (what does the AI perceive, and why), situational awareness (what is the AI understanding about the current driving environment, including the driver state), decision (why a certain decision is taken), and traffic management (how transport-level applications interoperate with AI-enabled systems operating at vehicle-level). Created data and tools will be made available via European data sharing initiatives (OpenData and OpenTools) to foster research on trustworthy AI for CCAM. ver más
31/10/2025
6M€
Duración del proyecto: 39 meses Fecha Inicio: 2022-07-27
Fecha Fin: 2025-10-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2022-07-27
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 6M€
Líder del proyecto
FUNDACION CENTRO DE TECNOLOGIAS DE INTERACCIO... No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 2-3 8M