Ageing Diagnostics and Prognostics of low voltage I C cables
The assessment of the condition of low-voltage instrumentation, control, and power cables in nuclear power plants is of increasing importance as plants age and lifetime extensions are envisaged. Furthermore as new reactors are bei...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto ADVANCE
Líder del proyecto
ELECTRICITE DE FRANCE
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
4M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The assessment of the condition of low-voltage instrumentation, control, and power cables in nuclear power plants is of increasing importance as plants age and lifetime extensions are envisaged. Furthermore as new reactors are being constructed and many other are planned for the near future, the initial cables choice and the use of effective in-situ condition monitoring (CM) techniques to follow cable condition indicators from the beginning, can result to be very valuable at a later time for an effective cable lifetime management.
The overall objective of the proposed project is to adapt, optimise and assess electrical CM techniques for nuclear cables that would allow utilities to assess in-situ the current cable degradation condition and, together with the establishment of appropriate acceptance criteria, to verify its qualified state over its entire length and to estimate its residual lifetime.
To this extent, the project will consist in studying with accelerated ageing tests a representative selection of cables already installed in European Nuclear Power Plants (NPPs) in order to evaluate the ability of electrical CM techniques to detect local and global cable ageing. The results will be compared and correlated to those obtained with more conventional CM techniques for validation and residual life estimation. These tests will be supported by the study of the impact of cable polymers ageing on the electrical properties. These studies will allow not only to guide the adaptation and the optimisation of existing CM techniques, but also to interpret the results of the electrical measurements, to extend the validity of the results to other similar cables and to adapt the future cable design and formulations to electrical CM techniques. This investigation on innovative cables for future plants could open the way to a new generation of intelligent cables with improved diagnostic capability.