Advancing orbitronics by pushing electron orbital angular momentum to terahertz...
The spin angular momentum (S) of the electron has significantly extended conventional electronics, which relies on the electron charge (C), by new, so-called spintronic functionalities. Examples include magnetization switching, th...
The spin angular momentum (S) of the electron has significantly extended conventional electronics, which relies on the electron charge (C), by new, so-called spintronic functionalities. Examples include magnetization switching, the transport of S and its detection, even down to femtosecond time scales. To boost the efficiency of spintronics, the so far neglected yet equally fascinating and important orbital angular momentum (L) of electrons is considered to be a powerful pathway. Orbitronic phenomena such as L-based transport, torques and magneto-optic effects have much larger magnitude than their S counterparts and may, thus, efficiently complement or even replace spintronic functionalities. Microscopically, L is completely different from S. Its dynamics involves new physics that needs to be understood, in particular on ultrafast time scales.In the ORBITERA project, my team and I will obtain unprecedented insights into L dynamics by using femtosecond optical pulses and terahertz (THz) electric fields, which couple directly to the motion of conduction electrons at their natural frequencies and relaxation rates. We will tackle important challenges of general orbitronics and, in particular, separate L- and S-based effects despite their identical macroscopic symmetry properties, build ultrafast generators and detectors of exclusively L currents, reveal the nature of L transport (e.g., ballistic, diffusive, tunneling), measure the magnetic moments forming an L current, probe the interaction of L with the crystal lattice, temporally resolve L-S and L-C interconversion, and apply THz L torque to ultimately switch magnetic order ultrafast.By establishing THz orbitronics, new methodology (such as ultrafast drivers of L currents and L-conductance spectroscopy at 0.1-50 THz) and applications (such as the detection of THz electric fields without relying on the weak spin-orbit coupling) will be developed that can be used by a community beyond specialized THz labs.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.