Advancing Novel imaging Technologies and data analyses in order to understand In...
Advancing Novel imaging Technologies and data analyses in order to understand Interior ocean Carbon Storage
Photosynthesis in the ocean converts approximately 100 Gt of carbon dioxide (CO2) into organic matter every year, of which 5-15% sinks to the deep ocean. The depth to which this organic matter sinks is important in controlling the...
ver más
Descripción del proyecto
Photosynthesis in the ocean converts approximately 100 Gt of carbon dioxide (CO2) into organic matter every year, of which 5-15% sinks to the deep ocean. The depth to which this organic matter sinks is important in controlling the magnitude of ocean carbon storage, as changes in this flux attenuation depth drive variations in atmospheric pCO2 of up to 200 ppm. Efforts to produce global maps of flux attenuation have yielded starkly contrasting global patterns, blocking our understanding of ocean carbon storage and our ability to predict it. The bottleneck is our ignorance of the spatiotemporal variability of the processes that control flux attenuation.
ANTICS will directly address this knowledge gap by using an innovative synthesis of cutting-edge in situ imaging, machine learning and novel data analyses to mechanistically understand ocean carbon storage. Use state-of-the-art imaging technologies, I will collect data on size, distribution and composition of organic matter particles and measure their sinking velocity in the upper 600 m across the Atlantic. I will design a neural network model that allows the conversion of in situ images into carbon fluxes, and develop analysis routines of particle size spectra that quantify the processes causing flux attenuation: remineralisation, physical aggregation/disaggregation, fragmentation/repackaging by zooplankton. By statistically linking these outputs to seasonality, depth, primary production and temperature, I will be able to determine which processes dominate under specific environmental conditions. This step change in our understanding will allow ANTICS to resolve flux attenuation spatially and temporally. I will use this pioneering knowledge to validate and inform the parametrization of the marine biogeochemical component of the UK’s earth system model used for carbon cycle forecasting in the next IPCC assessments.
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.