Advanced simulations in electrocatalysis for efficient production of C3+ by carb...
Advanced simulations in electrocatalysis for efficient production of C3+ by carbon dioxide reduction
The climate change has raised concerns about closing the carbon cycle by converting CO2 and renewable electricity to chemically stored energy in the form of fuels and commodity chemicals. Among these, long-chain hydrocarbons and a...
The climate change has raised concerns about closing the carbon cycle by converting CO2 and renewable electricity to chemically stored energy in the form of fuels and commodity chemicals. Among these, long-chain hydrocarbons and alcohols are more attractive because of their high energy density and value. Recently, reconstructed oxide-derived Cu (OD-Cu) catalysts have shown the potential to produce multicarbon species at lower overpotentials. However, few simulations have addressed the formation mechanism of these compounds due to the complex dynamics of this system under high currents, and the exact site for the excellent OD-Cu catalytic performance remains to be discovered. The DESCRIPTOR project aims to obtain the first generation of CO2 electroreduction catalyst with useful faradaic efficiencies towards C3+ products by employing computational simulations based on Density Functional Theory (DFT) and augmented by Machine Learning techniques. Firstly, suitable structures for the OD-Cu materials will be obtained through large scale Molecular Dynamics simulations based on Machine Learning potentials, by screening the most common ensembles identified via graph theory. Secondly, the mechanism towards C3+ will be identified via jDFTx scheme, and descriptors of activity and selectivity will be found through dimensionality reduction techniques. Finally, to assess and compare to experimental work from our collaborators, the contribution of the solvent/electrolyte and effect of experimental parameters will be investigated via ab initio Molecular Dynamics and microkinetic modelling. The structures will be characterized via simulations of X-ray Photoelectron Spectroscopy, and Raman spectra, etc. In summary, the outcome of DESCRIPTOR will have a direct scientific and social impact, by increasing the basic knowledge on catalysis of achieving renewable fuel sources and improving EU’s industrial competitiveness within new technologies for CO2 reduction.ver más
06-11-2024:
IDAE Cadena de Valor...
Se ha cerrado la línea de ayuda pública: Ayudas a Proyectos para reforzar la Cadena de Valor de equipos necesarios para la transición a una economía de cero emisiones netas
05-11-2024:
Cataluña Gestión For...
Se abre la línea de ayuda pública: Gestión Forestal Sostenible para Inversiones Forestales Productivas para el organismo:
04-11-2024:
Doctorados industria...
Se ha cerrado la línea de ayuda pública: Formación de doctores y doctoras de las universidades del Sistema universitario de Galicia (SUG) en empresas y centros de innovación y tecnología para el organismo:
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.