Innovating Works

SocketSense

Financiado
Advanced sensor based design and development of wearable prosthetic socket for a...
Limb amputations cause serious physical disabilities that compromise the quality of life of many people around the globe. There are 40 million amputees in the world with an estimated 2.4 million in the EU and approximately 215,000... Limb amputations cause serious physical disabilities that compromise the quality of life of many people around the globe. There are 40 million amputees in the world with an estimated 2.4 million in the EU and approximately 215,000 amputation surgeries performed each year (around 90% are lower limb amputees). Thus, there is a growing demand for efficient prosthetic socket systems due to growing number of amputees and lack of an existing solution for the comfortable socket. This project aims to develop a new solution for a prosthetic socket by developing wearable sensors to be embedded in a socket for the amputee patients to wear in everyday life. The sensors will allow real-time data collection allowing prosthetist to monitor the evolution of the performance of existing socket as well as the anatomical changes of the residual limb of amputees. New algorithms will be developed to evaluate all the biomechanical characteristics so that once the existing socket does not serve the patient, a new socket will be produced automatically without the need for the patient to go to a clinic in advance. SocketSense will meet this healthcare need by means of sensors, biomechanical modeling, AI, unified software and additive manufacturing technologies. The sensors will be developed based on QTSS materials (patent protected under WO2017103592A1). Biomechanical analytical models will be developed to turn the sensor data into optimized socket design. The whole SocketSense technique and procedure will be validated through clinical trials. The proposed solution will help address the societal challenge of personalized health and care solution for the population of lower-limb amputees. The project will implement flexible and wearable electronics into new QTSS material fabricating lightweight, flexible, printed and multi-functional electronic sensors to be embedded in prosthetic socket system. The development in the project will address market demand worth €1.76 billion by 2021. ver más
31/12/2022
KTH
4M€
Duración del proyecto: 48 meses Fecha Inicio: 2018-12-06
Fecha Fin: 2022-12-31

Línea de financiación: concedida

El organismo H2020 notifico la concesión del proyecto el día 2022-12-31
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 4M€
Líder del proyecto
KUNGLIGA TEKNISKA HOEGSKOLAN No se ha especificado una descripción o un objeto social para esta compañía.
Perfil tecnológico TRL 4-5