Advanced numerical modeling techniques and design of metasurface-based component...
Advanced numerical modeling techniques and design of metasurface-based components for 5G communications
The value of the global 5G services market is expected to grow to $249.2 billion by 2026. The considerably increased resources required (i.e. greater spectral bandwidth, greater throughput, lower latency) have already led to the t...
The value of the global 5G services market is expected to grow to $249.2 billion by 2026. The considerably increased resources required (i.e. greater spectral bandwidth, greater throughput, lower latency) have already led to the transition of telecommunication channels at higher frequency bands, where the design and utilization of artificially resonant materials, metamaterials, and their two-dimensional equivalents -metasurfaces- has emerged. Metasurfaces, the lightweight, easy-to-fabricate artificial sheet structures composed of subwavelength particles, exhibit unique electromagnetic properties of effectively controlling and manipulating the wave propagation and constitute the enabling technology for the design of mm-wave components. Fully planar waveguiding structures, beam-steerable leaky wave antennas, perfect absorbers are only a few applications of the emerged metasurface concept. Furthermore, increased requirements of multi-Gbps systems have already given a boost to reconfigurable designs of components via electronic tuning of their parameters. BEYOND META will provide a significant contribution to the wireless and mobile telecommunications sector, focused on the field of antennas and propagation, by developing a robust and powerful computational tool for the analysis, design, fabrication and measurement of metasurfaces, as an enabling technology for the production of novel components in the mm-wave region, in order to be incorporated in 5G communications systems, according to the industry demands. Special emphasis will be given on reconfigurability of innovative structures (antennas and absorbers), via application of electronically tunable mechanisms. The realization of these specific objectives will be performed by the researcher at the Section for Electromagnetic Systems of the Technical University of Denmark (DTU), and at Institute of Electronic Structure and Laser (IESL) of Foundation for Research and Technology Hellas (FORTH), at the secondment phase.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.