Innovating Works

NAPOLEON

Financiado
Advanced nanospectroscopy for mapping local conductivity in conductive metal-org...
Advanced nanospectroscopy for mapping local conductivity in conductive metal-organic framework NAPOLEON’s main objective is the development and demonstration of mapping ultra-broadband optical conductivity of novel conductive metal-organic frameworks (MOFs) by infrared nanospectroscopy (nano-FTIR). Conductive MOFs are criti... NAPOLEON’s main objective is the development and demonstration of mapping ultra-broadband optical conductivity of novel conductive metal-organic frameworks (MOFs) by infrared nanospectroscopy (nano-FTIR). Conductive MOFs are critically important for the development of a highly efficient and low cost electrocatalysis for electric energy storage and retrieval. MOFs development needs the understanding of its conductive properties down to the nanoscale, which is not possible with traditional electrical transport measurements. Nano-FITR offers several advantages compared to traditional transport measurements: no contacts are needed, there are no problems with contact resistances, nanoscale materials can be measured, and the frequency-dependent response provides deeper insights into conduction properties than just DC measurements. However, current tabletop nano-FTIR systems are not able to characterise conductive MOFs due to the limited spectral coverage of the employed laser sources. To overcome this challenge I will introduce a novel plasma source-based nano-FTIR spectrometer, which will ensure the broadest spectral coverage. Then, I will develop a new model from which the anisotropic conductivity of MOFs can be extracted from nano-FTIR spectra. Finally, I will use the improved nano-FTIR system and the new model to study a highly conductive MOF sample, the CU-BHT, which demonstrated high electrocatalytic activity. NAPOLEON will provide innovative technologies, original methods and breakthrough knowledge in the fields of chemistry, nanooptics and solid-state physics. Specifically, NAPOLEON will develop the first methodology to measure optical conductivity in conductive MOFs with nanoscale resolution, which will contribute to boost the development of these materials. The results envisioned by NAPOLEON in terms of characterisation and understudying of new materials for electrocatalysis will be a key piece to achieve the EU target of carbon neutrality by 2050. ver más
31/08/2026
181K€
Duración del proyecto: 37 meses Fecha Inicio: 2023-07-24
Fecha Fin: 2026-08-31

Línea de financiación: concedida

El organismo HORIZON EUROPE notifico la concesión del proyecto el día 2023-07-24
Línea de financiación objetivo El proyecto se financió a través de la siguiente ayuda:
Presupuesto El presupuesto total del proyecto asciende a 181K€
Líder del proyecto
ASOC CIC NANOGUNE Actividades auxiliares a la educación asociacion
Perfil tecnológico TRL 4-5 50K