Advanced Materials for Cardiac Regeneration AMCARE
The Advanced Materials for Cardiac Regeneration (AMCARE) consortium aims to establish a translational research program to develop truly restorative therapies for acute myocardial infarction repair (MI) by optimising cardiac progen...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
HEART PATCH
Development of a Bioengineered Heart Patch for the Treatment...
100K€
Cerrado
4DPrintedHeart
4D Printing of Human Vascularized Cardiac Patches and Hearts...
2M€
Cerrado
PID2021-125124OB-I00
COMBINACION DE BIOMATERIALES 3D Y MIRNAS PARA LA REPARACION...
290K€
Cerrado
PiezoMac
Piezoceutical biomaterial scaffolds for immunomodulatory-bas...
3M€
Cerrado
SAF2011-30067-C02-01
DESARROLLO DE BIOIMPLANTES PARA LA REGENERACION CARDIACA CON...
254K€
Cerrado
ELR-SCAR
"A novel multi-functional elastin-like recombinant hydrogel...
4M€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The Advanced Materials for Cardiac Regeneration (AMCARE) consortium aims to establish a translational research program to develop truly restorative therapies for acute myocardial infarction repair (MI) by optimising cardiac progenitor cell (CPC) therapy using smart biomaterials and advanced drug delivery, and coupling these therapeutics with minimally-invasive surgical devices. Two distinct biomaterial delivery systems for CPCs will be investigated in the AMCARE work programme including HA-based patches (CardioPatch) and HA-hydrogels (CardioGel). We also propose to develop two prototypes of new surgical devices [C-CathGel and SPREDS] that will ensure a minimally invasive delivery and fixation approach that is safe and effective for each therapeutic. The combinations of advanced material carriers and surgical devices will be assessed in a large animal model of acute-MI to best align our approach to clinical translation. The novel formulations and delivery methods will help post-MI patients in restoring cardiac function by targeting for repair the underlying myocardium damage, and could potentially decrease morbidity and mortality in the future. These goals will be achieved by integrating numerous areas of materials science and stem cell biology as well as leaders in the field of medical devices, biomaterials and cardiovascular regeneration. We thus aim to improve long-term healthcare of EU citizens by offering a revolutionary therapeutic modality for the treatment of acute-MI.