Advanced Materials as CO2 Removers A Computational Study of CO2 Sorption Therm...
Advanced Materials as CO2 Removers A Computational Study of CO2 Sorption Thermodynamics and Kinetics
The proposed work aims at developing the tools required for the intelligent choosing and tuning of nano-porous materials with respect to a specific application. For this purpose, a combined computational theoretical and experimen...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
TED2021-129886B-C44
SIMULACION MULTIESCALA DE MATERIALES POROSOS AVANZADOS
181K€
Cerrado
CTQ2016-80886-R
MATERIALES COMPUESTOS POROSOS 3D OBTENIDOS POR EL METODO DE...
212K€
Cerrado
FAST-MAP
Fast testing of multicomponent adsorption and diffusion in p...
176K€
Cerrado
CTM2010-18889
CONTROL ESTRUCTURAL DE MATERIALES AVANZADOS DE CARBON PARA L...
140K€
Cerrado
CTQ2010-16077
SIMULACION MOLECULAR EN MATERIALES POROSOS CRISTALINOS COMO...
109K€
Cerrado
MAT2013-45071-R
NUEVOS MATERIALES PARA CAPTURA DE CO2. MEMBRANAS POLIMERICAS...
79K€
Cerrado
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The proposed work aims at developing the tools required for the intelligent choosing and tuning of nano-porous materials with respect to a specific application. For this purpose, a combined computational theoretical and experimental study is envisaged in order to digitally reconstruct the porous matrix of selected advanced materials, mainly for applications involving sorption of carbon dioxide and methane by employing advanced Statistical Mechanics based computer simulation methods, both, in atomistic (Monte Carlo, ab initio and equilibrium and non-equilibrium Molecular Dynamics) and mesoscopic level (Kinetic Monte Carlo and Lattice Gas Cellular Automata). The reasoning behind this strategy is that the structure of materials spans a wide range of length scales, making thus sorption and transport phenomena depend upon length and time scale. As a consequence, the proposed computational methodology consists of many levels in order to address properly these phenomena. Moreover, a complementary approach to computer simulations is provided through direct comparison of two highly sophisticated methods for measuring motion of guest molecules inside porous materials, namely, quasi-elastic neutron scattering (QENS) and pulsed field gradient nuclear magnetic resonance (PFG NMR), carried out by the groups of Lyon and Leipzig respectively. This type of combined studies can be perfectly utilized through the proposed work towards a fascinating insight of the relation of the material interior to the sorption and transport mechanisms of sorbates such as carbon dioxide and methane, both involved in the so-called greenhouse effect.