Advanced machine learning for Innovative Drug Discovery
"The dramatic increase in using of Artificial Intelligence (AI) and machine learning methods in different fields of science becomes an essential asset in the development of the chemical industry, including pharmaceutical, agro bio...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-112539RB-I00
DISEÑO DE FARMACOS DIRIGIDO POR INTELIGENCIA ARTIFICIAL PARA...
73K€
Cerrado
PICARD
DISRUPTIVE GPCR LEAD DISCOVERY PLATFORM DELIVERING NEW AND S...
2M€
Cerrado
TED2021-129970B-C21
DESARROLLO DE UN MARCO BASADO EN INTELIGENCIA ARTIFICIAL PAR...
253K€
Cerrado
PTQ-16-08393
Desarrollo de anticuerpos mediante técnicas in silico e inte...
83K€
Cerrado
PTQ2023-013187
Desarrollo de una metodología de diseño de fármacos basada e...
115K€
Cerrado
RED2018-102491-T
APLICACIONES TERAPEUTICAS DE LA NEUROCIENCIA DE SISTEMAS EN...
20K€
Cerrado
Información proyecto AIDD
Duración del proyecto: 55 meses
Fecha Inicio: 2020-08-24
Fecha Fin: 2025-03-31
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
"The dramatic increase in using of Artificial Intelligence (AI) and machine learning methods in different fields of science becomes an essential asset in the development of the chemical industry, including pharmaceutical, agro biotech, and other chemical companies. However, the application of AI in these fields is not straightforward and requires excellent knowledge of chemistry. Thus, there is a strong need to train and prepare a new generation of scientists who have skills both in machine learning and in chemistry and can advance medicinal chemistry, which is the prime goal of the AIDD proposal. Research WPs include sixteen topics selected to cover the key innovative directions in machine learning in chemistry. Fellows employed will be supervised by academics who have excellent complementary expertise and contributed some of the fundamental AI algorithms which are used billions of times per day in the world, and leading EU Pharma companies who are in charge of new medicine and public health. All developed methods can be used individually but will also contribute to an integrated ""One Chemistry"" model that can predict outcomes ranging from different properties to molecule generation and synthesis. Training on various modalities allows the model to understand how to intertwine chemistry and biology to develop a new drug making its design robust and explainable. All partners agreed to make their software open source. It will boost the field and will provide the broadest possible dissemination of the results both to the academy and industry, including SMEs. The network will offer comprehensive, structured training through a well-elaborated Curriculum, online courses, and six Schools. The IP policy and commercial exploitation of the project results have the highest priority supported by intellectual property asset management organizations. Comprehensive public engagement activities will complement the dissemination of results to the scientific community."