Advanced EUV soft X ray microscopy in the ultrafast regime imaging functionalit...
Advanced EUV soft X ray microscopy in the ultrafast regime imaging functionality of nanomaterials across length scales
Imaging charge, spin, and energy flow in functional materials when hit by a light pulse, is a current grand challenge in nanotechnology relevant to a host of systems including photovoltaics, optoelectronic and spin devices. The de...
Imaging charge, spin, and energy flow in functional materials when hit by a light pulse, is a current grand challenge in nanotechnology relevant to a host of systems including photovoltaics, optoelectronic and spin devices. The design of such materials relies critically on the availability of accurate characterisation tools of how light-induced function and performance are related to nano-to-mesoscale electronic and lattice structural properties.
To address this challenge, ULTRAIMAGE will introduce ground-breaking capabilities in microscopy of nanomaterials, providing access to their far-from-equilibrium states, with resolution on nanometer-to-Ångstrom length and femtosecond time scales. Key to this advance is the combination of extreme ultraviolet (EUV) to soft X-ray tabletop coherent light sources with a technique for coherent diffractive imaging called ptychography, in which multiple diffraction patterns from overlapping fields of view are processed by iterative algorithms to recover amplitude and phase images of sample and beam, separately.
Nanoscale movies of the sample’s impulsive response, irradiated by ultrafast laser pulses, will be obtained with extremely high fidelity and in a non-destructive approach, with sub-20nm transverse resolution, 0.5Å axial precision, and ≈10fs temporal resolution. Each movie frame will be characterized by amplitude and phase images of the sample, with exquisite quantitative contrast to material composition, and to its topography.
ULTRAIMAGE will introduce a world-class tabletop facility for ultrafast ptychography with coherent short-wavelength EUV light, which will enable the understanding with unprecedented detail of fundamental nanoscale behaviour, vital to a better design of energy-efficient next generation devices.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.