Advanced Data Methods for Improved Tiltrotor Test and Design
Flight testing is an important phase during the development of an aircraft to validate the design. During flight, data is gathered and design problems are identified and solved. The collected data are fundamental for the analysis...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Proyectos interesantes
PID2020-114173RB-I00
NUEVAS HERRAMIENTAS Y MODELOS FIABLES PARA EL DISEÑO Y LA EV...
184K€
Cerrado
SVETLANA
Safety and maintenance improVEment Through automated fLigh...
4M€
Cerrado
RapeedTest
IntegRAted control technology for unparalleled high sPEED da...
71K€
Cerrado
PID2021-122323OB-C32
GESTION DE LA INCERTIDUMBRE SOBRE TORMENTAS PARA UN TRANSPOR...
43K€
Cerrado
TRA2014-58413-C2-1-R
ANALISIS Y OPTIMIZACION DE TRAYECTORIAS DE AVION BAJO LOS EF...
97K€
Cerrado
Información proyecto ADMITTED
Duración del proyecto: 57 meses
Fecha Inicio: 2019-02-15
Fecha Fin: 2023-11-30
Líder del proyecto
TXT ETECH SRL
No se ha especificado una descripción o un objeto social para esta compañía.
Presupuesto del proyecto
2M€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
Flight testing is an important phase during the development of an aircraft to validate the design. During flight, data is gathered and design problems are identified and solved. The collected data are fundamental for the analysis and Aircraft are properly instrumented to generate large amounts of information. Such huge amount of data needs to be properly evaluated and traditional methods and platforms are no more effective.
Flight testing is a significant cost contributor to the aircraft production life cycle and is still extensively deployed. Flight test programmes take several years and more prototypes are built to reduce lead times. Strong adherence to rigour safety and certification requirements and generally unchanged circular advisories inhibit the potential improvement of flight test designs. Innovative algorithms and statistical estimation are not achieving its full potential in the industrialized flight testing environment.
The methods in this proposal increase the quality and productivity of an experiment, leading to a required test point reduction or increased predictive capabilities. The purpose of this project is to define and implement a state-of-the-art platform able to support data analysis. This is achieved by adopting a complex hardware architecture to support big data analysis and implementing specific algorithms to support data correlation, time series management and statistical analysis.
Furthermore, to support flight test engineers, novel approaches based on machine learning are provided to support the technicians in detecting specific flight conditions. The same platform is also adapted to support the development of the Next Generation Civil Tilt Rotor Technology Demonstrator.