Advanced, trustworthy AI and data solutions for individualised automated milkin...
Advanced, trustworthy AI and data solutions for individualised automated milking & feeding of dairy cows
The agricultural sector has a big challenge: producing more with fewer raw materials and less adverse effects on society, production animals, climate and biodiversity. Optimal use of resource is even more important now, due to the...
The agricultural sector has a big challenge: producing more with fewer raw materials and less adverse effects on society, production animals, climate and biodiversity. Optimal use of resource is even more important now, due to the imminent food crisis. Climate-friendly sustainable agriculture, with care for natural resources, is essential for our food production and quality of life, today and for future generations.
Automated Milking Systems (AMS) were developed in the late 20th century under the perspective of reducing manual labour & costs and improving quality of life for the farmers. Not only have these machines improved in harvesting milk efficiently, but they also have the added ability to collect a greater amount of data about production, milk composition, cows health and behaviour. This could allow producers to make more informed management decisions, while in parallel reducing emissions and increasing animal welfare.
Nevertheless, currently available AMS have important limitations in terms of optimising their operation.
dAIry 4.0 addresses these challenges, integrating and optimising AI, data and robotics solutions to demonstrate how this combination will optimise AMS production aspects and minimise adverse effects on society, climate and biodiversity. The approach will be demonstrated through real-world use cases of interest both for the farming sector and the food industry. In terms of AI tools to be used, the project will focus on the following novelties:
- Developing multimodal learning techniques to efficiently utilize multiple types of information for animal health & overall animal status monitoring
- Developing self-supervised and novel data augmentation techniques to reduce the amount of labelled training data needed
- Exploring novel explainable AI techniques to increase transparency of the system and eventually facilitate acceptance by the users
- Including the farmer in the loop to build the cognitive abilities for the systemver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.