ADAPTIVE TRANSPORT SYSTEMS WITH HOLISTIC REPRESENTATION OF SUPPLY AND DEMAND
Transport systems are complex with various entities across different decision-making levels. There is currently no comprehensive way to model these entities and their interactions, which prevents utilizing the full potential of th...
Transport systems are complex with various entities across different decision-making levels. There is currently no comprehensive way to model these entities and their interactions, which prevents utilizing the full potential of the system. For efficient and sustainable transportation, we need to model the perspective of both the supply (e.g., services, infrastructure) and the demand side (e.g., preferences of users). Only then a holistic modelling framework can be developed where the decisions at different levels learn from one another and are adapted continuously in a robust way while accommodating the different preferences.
I propose a holistic adaptive modelling framework that considers the interaction between different levels, both on the supply and demand sides, in order to adapt the decisions towards increased efficiency and sustainability. This necessitates a paradigm change in modelling as it is challenging to maintain robustness across different time-scales at the network level. Even though integrated models for multiple decision-making levels (strategic, tactical, operational) are a trend, they only allow a reactive ex-post assessment but are not dynamically coupled (not self-learning). I plan to achieve this by developing model-based adaptive optimization and learning methods with my expertise on optimization and behavioural modelling. For example, based on the performance of the routing decisions at the operational level in terms of delays, the decisions on fleet sizing and/or capacity of facilities will be adapted. Similarly, based on a continuous learning of the preferences of users, transport decisions will be adapted.
ADAPT-OR will lead to new models and algorithms for transportation researchers (and beyond) with self-learning capabilities. This capability will enable service providers to adapt and maintain their business, users to receive better services and society to reach sustainable transport solutions addressing one of EU’s grand challenges.ver más
02-11-2024:
Generación Fotovolt...
Se ha cerrado la línea de ayuda pública: Subvenciones destinadas al fomento de la generación fotovoltaica en espacios antropizados en Canarias, 2024
01-11-2024:
ENESA
En las últimas 48 horas el Organismo ENESA ha otorgado 6 concesiones
01-11-2024:
FEGA
En las últimas 48 horas el Organismo FEGA ha otorgado 1667 concesiones
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.