Adaptation oriented Seamless Predictions of European ClimaTe
ASPECT aims for the setup and demonstration of a seamless climate information (SCI) system with a time horizon up to 30yr, accompanied by underpinning research and utilisation of climate information for sectoral applications (‘mid...
ASPECT aims for the setup and demonstration of a seamless climate information (SCI) system with a time horizon up to 30yr, accompanied by underpinning research and utilisation of climate information for sectoral applications (‘middle-ground level’1). The goal is to improve existing climate prediction systems and merge their outputs across timescales together with climate projections to unify a SCI as a standard for sectoral decision-making. The focus will be on European climate information but we will also look more widely where there is a policy interest (e.g., disaster preparedness) and in regions of European interest. We will maintain a strong link into an exploit learning from the WCRP lighthouse activities on explaining and predicting earth system change.
To provide a bandwidth diversity of information the SCI system will be based on multi-model climate forecasts, and will build on learning from projects such as EUCP. It will align with new activities on Digital Twins within Europe, including DestinE. The SCI will combine physical science aspects with those from other disciplines to ensure the information is robust, reliable and relevant for a range of user driven decision cases. The information package will incorporate baseline forecasts and projections (plus uncertainty), but also new frontiers will be explored (e.g., extremes which are of socioeconomic high-level interest). To be successful the research will encompass: Understanding and attribution of various processes along the timescales (such as exploring signal-to-noise ratio) and their impact on predictability, new ways of initialisation of the prediction systems, merging predictions with projections, provision of regional SCI for Europe by downscaling (statistical methods, AI) and HighRes models (including convection-permitting models) and innovative post-processing method enhancing the skill and robustness of the climate forecasts.ver más
Seleccionando "Aceptar todas las cookies" acepta el uso de cookies para ayudarnos a brindarle una mejor experiencia de usuario y para analizar el uso del sitio web. Al hacer clic en "Ajustar tus preferencias" puede elegir qué cookies permitir. Solo las cookies esenciales son necesarias para el correcto funcionamiento de nuestro sitio web y no se pueden rechazar.
Cookie settings
Nuestro sitio web almacena cuatro tipos de cookies. En cualquier momento puede elegir qué cookies acepta y cuáles rechaza. Puede obtener más información sobre qué son las cookies y qué tipos de cookies almacenamos en nuestra Política de cookies.
Son necesarias por razones técnicas. Sin ellas, este sitio web podría no funcionar correctamente.
Son necesarias para una funcionalidad específica en el sitio web. Sin ellos, algunas características pueden estar deshabilitadas.
Nos permite analizar el uso del sitio web y mejorar la experiencia del visitante.
Nos permite personalizar su experiencia y enviarle contenido y ofertas relevantes, en este sitio web y en otros sitios web.