The interaction between light and matter by creation of excitons (electron-hole pairs) provides one of the most common routes for generation of functional optical and electro-optical devices. These devices including lasers, detect...
ver más
¿Tienes un proyecto y buscas un partner? Gracias a nuestro motor inteligente podemos recomendarte los mejores socios y ponerte en contacto con ellos. Te lo explicamos en este video
Información proyecto ACTIVE NEC
Líder del proyecto
TEL AVIV UNIVERSITY
No se ha especificado una descripción o un objeto social para esta compañía.
TRL
4-5
Presupuesto del proyecto
100K€
Fecha límite de participación
Sin fecha límite de participación.
Descripción del proyecto
The interaction between light and matter by creation of excitons (electron-hole pairs) provides one of the most common routes for generation of functional optical and electro-optical devices. These devices including lasers, detectors, biological markers, solar cells, etc., have great impact both on science, technology, and common wellbeing. In order to make better optical and electro-optical devices, i.e. more efficient, smaller and faster, it is highly important to find new and improved ways to focus, control, and couple light to optically active materials. One promising way to achieve it is by utilizing extreme plasmonic field enhancements on optical nanoantennas which have a dramatic effect on light-matter interaction. Here I propose to study experimentally and theoretically the use of advanced arrangements of optical nanoantennas that support extreme field enhancements to boost the interaction between light and excitons in nanoantenna-exciton-complexes (NECs). The first aim of this project is to use NECs to generate exciton-localized-surface-plasmon-polaritons (XLSP) operating at the strong and ultrastrong coupling regimes and to probe the intriguing associated physical phenomena. The second aim is to create novel ultrafast all-optical switches of XLSPs and to use them in different device applications. The third aim is to study for the first time stimulated scattering effects of XLSP and to demonstrate Bose-Einstein condensation of XLSPs in optical nanoantenna trap. The fourth aim is to combine the field of plasmonics with the emerging field of photon upconversion by sensitized triplet-triplet annihilation and to create NECs that support plasmon upconversion. This will lead to improvements of photon upconversion techniques and open door to new nanoscale energy converting devices. For the studies we will use advanced nanofabrication techniques and advanced experimental methods, including ultrafast probe beams, lifetime imaging techniques and near field nanoscopy.